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Figure 7: Testing experimental predictions of DGN during learning of cue-reward association.
A. Simultaneous multi-plane 2-photon imaging of molecular layer interneurons (red hues)
and Purkinje cell dendrites (blue hues) expressing GCaMP7f. Images were acquired across
5 planes at an effective rate of 9.7 Hz. B. Example traces of simultaneously recorded MLIs
(red, top) and Purkinje cell dendrites (blue, bottom). C. Licking responses of mice during
initial 125 trials of cue-reward pairing showing licking on individual trials (top) and mean
lick probability (bottom). D. Trial-wise reward delivery responses in MLIs (left, n = 15) and
Purkinje cell dendrites (right, n = 67) calculated as mean response in 1 s window after reward
delivery. E. Similarity matrix of population vector response for MLIs (left) and Purkinje
cell dendrites (right). F. Mean pairwise correlations of population vector responses in MLIs
and Purkinje cell dendrites. MLIs responses exhibit greater trial-by-trial consistency. Data
are shown as mean± S.E.M.

neuron; Fig. 7D). We compared the stability of these population response vectors in271

MLIs and Purkinje cell dendrites (reflecting climbing fiber input) over the course of the272

first 125 cue-reward pairing trials (Fig. 7E). The MLI population vector response was273

significantly more stable across these learning trials than the corresponding population274

response vector in Purkinje cell dendrites (Fig. 7F), consistent with the tendency for275

DGN gates to remain stable while other elements evolve with learning.276

3 Discussion277

A critical open question in neuroscience is: what learning rules ensure that synaptic278

strengths are updated in a way that improves performance? Answering this is difficult279

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.10.434756doi: bioRxiv preprint 



in large part because of the way we think about computation, which is that networks280

map input to output in stages, with the input gradually transformed, until eventually,281

in the output layer, the relevant features are easy to extract. There is certainly some282

evidence for this. It is, for example, much harder to extract which face a person is283

looking at from activity in visual area V1 than in fusiform face area [81, 82]. While284

this strategy for computing is reasonable, it has a downside: the relationship between285

activity in intermediate layers and activity in the output layer is highly nontrivial,286

which makes it especially hard for the brain to determine how weights in intermediate287

layers should change.288

Here we propose that the brain might take a different approach, one based on289

Dendritic Gated Networks, or DGNs, which is a variant of the Gated Linear Network290

[1, 2]. With this architecture, each neuron is active for a relatively small region of the291

input space; for the rest, it is gated “off”. Each neuron receives its input from the292

layer below, as in conventional networks, but its goal is not to transform that input;293

instead, its goal is to predict the output of the whole network. That makes the role294

of every neuron transparent (all neurons in all layers are doing the same thing), which295

makes learning simple – all that is required is a delta rule.296

The ease of learning makes DGNs strong candidates for biological networks. In297

addition, we showed they are compatible with the architecture and function of the298

cerebellum, and that they perform well on three nontrivial tasks. Finally, we supplied299

preliminary experimental support for gating, which in the cerebellum we hypothesize300

is done by the molecular layer interneurons.301

DGNs make three strong predictions for the cerebellum. First, the activity of the302

molecular layer interneurons should depend solely on parallel fiber input and should303

not change with learning – or change very slowly relative to the timescale over which304

Purkinje cells learn, the latter measured in single trials [83]. This prediction is consis-305

tent with our in vivo imaging experiments. Second, dendritic branches should be in306

one of two states, determined by molecular layer interneuron activity: either a branch307

receives very little MLI input, so that it can transmit information from parallel fibers308

to Purkinje cells, or it receives very large MLI input, so that it cannot transmit infor-309

mation. Testing the second prediction is challenging, but could be addressed using a310

combination of cellular resolution all-optical stimulation and voltage imaging, a tech-311

nical feat that may soon be within reach [84, 85]. Third, for parallel fibers carrying312

delayed information about head position, the parallel fiber to Purkinje cell weights313

should be a smooth function of the delay (Fig. 6d, top panel).314

In summary, Dendritic Gated Networks are strong candidates for biological net-315

works – and not just in the cerebellum; they could be used anywhere there is approx-316

imately feedforward structure. They come with two desirable features: biologically317

plausible learning, and rapid, data-efficient learning. And they imply a novel role for318

inhibitory neurons, which is that they are used for gating dendritic branches on and319

off. Importantly, they make strong, experimentally testable, predictions, so we will320

soon know whether they are actually used in the brain.321
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4 Methods322

4.1 Model323

The network we use in our model is described in Eqs. (1) and (2), and the learning
rules are given in Eq. (3). In particular, Eq. (5) is used in all our simulations except for
MNIST, where the output is categorical. In that case, we bound neural activities so
they can represent probabilities. We use a standard sigmoid function, σ(z) = ez/(1 +
ez), albeit modified slightly,

φ(z) = clip1−εε

(
σ(z)

)
(8)

where clipba(·) clips values between a and b (so the right hand side is zero if σ(z) is324

smaller than ε or larger than 1− ε). Clipping is used for bounding the loss as well as325

the gradients; this helps with numerical stability, and also enables a worst-case regret326

analysis [1, 2]. We set ε to 0.01, so neural activity lies between values 0.01 and .99.327

The loss of neuron i in layer k in this case is given by

`(r∗, rk,i) = −r∗ log rk,i − (1− r∗) log
(
1− rk,i

)
. (9)

Consequently, the update rule for the weights, Eq. (3), is (after a small amount of
algebra)

∆wbk,ij = ηgbk,i(x)1(ε < rk,i < 1− ε)
(
r∗ − rk,i

)
hk−1,j (10)

where 1(·) is 1 when its argument is true and 0 otherwise. The fact that the learning
is zero when rk,i is outside the range [ε, 1 − ε] follows because dφ(z)/dz = 0 when z
is outside this range (see Eq. (8)). This ensures that learning saturates when weights
become too large (either positive or negative). However, this can cause problems if
the output is very wrong: when r∗ = 1 and rk,i < ε or r∗ = 0 and rk,i > 1 − ε. To
address this, we allow learning in this regime. We can do this compactly by changing
the learning rule to

∆wbk,ij = ηgbk,i(x)1(|r∗ − rk,i| > ε)
(
r∗ − rk,i

)
hk−1,j . (11)

Essentially, this rule says: stop learning when rk,i is within ε of r∗. See [86] for a328

complementary view of how categorical problems might be solved by gated neurons in329

the brain.330

For a compact summary of the equations (given as pseudocode), see Supplementary331

Algorithms S1 and S2.332

4.2 Simulations333

Simulations were written using JAX [87], the DeepMind JAX Ecosystem [88], and334

Colab [89].335
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Catastrophic Forgetting. We adopt the pixel-permuted MNIST benchmark [55,336

58], which is a sequence of MNIST digit classification tasks with different pixel per-337

mutations. Each task consists of 60,000 training images and 10,000 test images, all338

images are deskewed. Models are trained sequentially across 10 tasks, performing a339

single pass over each. We provide the implementation details of the baselines below.340

We display the parameters swept during grid search in Supplementary Table S2.341

DGN. We use networks composed of 100 and 20 units in the hidden layers and342

a single linear neuron layer for the output. Each neuron in the hidden layer has 10343

dendritic branches. The output of the network is determined by the last neuron.344

MNIST has 10 classes, each corresponding to a digit. Therefore, we utilize 10 DGN345

networks, each encoding the probability of a distinct class. Each of these networks are346

updated during training using a learning rate of 10−2. During testing, the class with347

the maximum probability is chosen. Images are scaled and shifted so that the input348

range is [−1, 1]. The gating vectors, vbk,i, are chosen randomly on the unit sphere,349

which can be achieved by sampling from an isotropic Normal distribution and then350

dividing by the L2 norm. The biases, θbk,i are drawn independently from a centred351

normal distribution with standard deviation 0.05.352

MLP and EWC. We use a ReLu network with 1000 and 200 neurons in the hidden353

layers and 10 linear output units with cross entropy loss. In this setting, the MLP354

and EWC have the same number of neurons as DGN but fewer plastic weights in355

total. We use the ADAM optimization method [90] with a learning rate of 10−4 (see356

Supplementary Table S2 for details of the hyperparameter optimization), in conjunction357

with dropout. We use mini-batches of 20 data points. For EWC, we draw 100 samples358

for computing the Fisher matrix diagonals and set the regularization constant to 103.359

Inverse Kinematics. Each DGN network has 20 Purkinje cells with 5000 branches360

each. We use a quadratic loss (4) with a learning rate η = 10−5 for 2000 epochs (2000361

passes over the dataset). The inputs are centered at 0 and scaled to unit variance per362

dimension, the targets are scaled so that they lie between 0 and 1. The reported MSEs363

are computed on the test set based on inverse transformed predictions (thus undoing364

the target scaling). The gating parameters are chosen in the same way as for the Mnist365

simulations (see above).366

We discovered that the the training set of the SARCOS dataset (downloaded from367

http://www.gaussianprocess.org/gpml/data/ on 15 December 2020) includes test368

instances. To the best of our knowledge, other recent studies using the SARCOS369

dataset [91, 92] reported results with this train/test setting. This means that the re-370

ported errors are measures of capacity rather than generalization. We compare the371

performance of DGN against the best known SARCOS results in Supplementary Ta-372

ble S1 using the existing train/test split. If we exclude the test instances from the373

train set, we get an MSE for the DGN of 0.84 using the same network setting and374

parameters.375

VOR. The gating parameters vbk,ij and θbk,i (Eq. (2)), were drawn independently from376

the standard normal distribution. Learning rate was η = 10−5 for DGN and η = 0.02377

for MLP.378
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4.3 Animal experiments379

Animal housing and surgery All animal procedures were approved by the lo-380

cal Animal Welfare and Ethical Review Board and performed under license from the381

UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986 and382

generally followed procedures described previously [93]. Briefly, we used PV-Cre mice383

(B6;129P2-Pvalbtm1(cre)Arbr/J) [94] crossed with C57/BL6 wild type mice. Mice384

were group housed before and after surgery and maintained on a 12:12 day-night cy-385

cle. Surgical procedures were identical to those described in [93], except that we in-386

jected Cre-dependent GCaMP7f (pGP-AAV-CAG-FLEX-jGCaMP7f-WPRE [serotype387

1]; [95]) diluted from its stock titer at 1:25. After mice had recovered from surgery,388

they were placed under water restriction for at least 5 days during which time they389

were acclimated to the recording setup and expression-checked. All mice were main-390

tained at 80-85 percent of their initial weight over the course of imaging. Trained mice391

typically received all their water for the day from reward during the behavioral task,392

while näıve mice were supplemented to 1 g water per day with Hydrogel.393

Cue-reward association training Mice were trained on a conditioning protocol394

in which an auditory cue (4 kHz, 100 ms duration) was paired with a reward deliv-395

ered 500 ms after cue onset, similar to the conditioning paradigm described in [93].396

Responses of MLIs and PC dendrites to reward delivery were recorded and analyzed397

during the first 125 trials after initial cue-reward pairing to assess response consistency398

across the initial learning phase of this association.399

Two-photon calcium imaging, data acquisition, and processing Imag-400

ing experiments were performed using a 16x/0.8 NA objective (Nikon) mounted on a401

Sutter MOM microscope equipped with the Resonant Scan Box module. A Ti:Sapphire402

laser tuned to 930 nm (Mai Tai, Spectra Physics) was raster scanned using a resonant403

scanning galvanometer (8 kHz, Cambridge Technologies) and images were collected at404

512x256 pixel resolution over fields of view of 450x225 µm per plane. Volumetric imag-405

ing across 5 planes spaced by 10 µm (depth ranging 25-65 µm below pial surface) were406

performed using a P-726 PIFOC High-Load Objective Scanner (Physik Instruments)407

at an effective volume rate of 9.7 Hz. The microscope was controlled using ScanImage408

(Version 2015, Vidrio Technologies) and tilted to 10 degrees such that the objective409

was orthogonal to the surface of the brain and coverglass. ROIs corresponding to single410

MLIs and PC dendrites were extracted using a combination of Suite2p software [96]411

for initial source extraction and custom-written software to merge PC dendritic ROIs412

across recording planes, which exhibited highly correlated calcium signals. Calcium413

signals corresponding to individual MLI somata and PC dendrites, which were easily414

distinguishable based on their shape, were computed as (F-F0)/F0 where F was the415

signal measured at each point in time and F0 is the 8th percentile of a 200 second416

rolling average surrounding each data time point). A neuropil correction coefficient of417

0.5 (50 percent of neuropil signal output from Suite2p) was applied to all ROIs. A418

range of baseline durations and neuropil correction coefficients were tested and varying419

these parameters did not alter the main findings. Fluorescence changes for each neuron420

were then z-scored over time to facilitate comparisons between individual neurons with421
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different baseline expression levels. Behavioural events and imaging synchronization422

signals were acquired using PackIO (see [93] for detailed description) and aligned offline423

using custom written scripts.424

Code availability. We provide pseudo code in Supplementary Algorithms S1 andS2.425

A simple python implementation can be accessed via https://github.com/deepmind/426

deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_427

network.ipynb.428

Data availability. The data that support the findings of this study are available429

from the corresponding authors upon reasonable request. Additional analysis made430

use of standard publicly available benchmarks including MNIST [97] and SARCOS431

(http://www.gaussianprocess.org/gpml/data/).432
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Supplementary Methods703

Convexity704

If we ignore clipping, which has no effect on the convexity proof, the structure of the705

loss ` as a function of the weight vector w is as follows: `(r∗, r) with r = φ(h) and706

h = c ·w. Concretely, for neuron i in layer k, we have r = rk,i and h = hk,i ∈ R and707

w = w•
k,i• ∈ R(nk−1+1)×Bk,i and c = g•

k,i(x)hk−1,• ∈ R(nk−1+1)×Bk,i and · denotes sum708

over j and b. If `(r∗, φ(h))) is convex in h, then ` is also convex in w, since h is a linear709

function of w (e.g. [98] Sec.3.2.2). For quadratic loss (4) and φ being the identity,710

`(r∗, φ(h))) = 1
2(r∗−h)2 is obviously convex in h hence w. For log-loss (9) and φ(h) =711

σ(h) = 1/(1 + e−h), it is easy to show that ∂2`(r∗, φ(h)))/∂h2 = σ(h)(1 − σ(h)) > 0,712

hence, again, ` is convex in h and therefore also in w.713

Inverse Kinematics714

In Table S1 we compare the mean square error (MSE) obtained by DGN against715

baselines obtained from [30, 91, 92]. Note that, as mentioned in Methods, we (like716

others) used a test set that contained training examples.717

Algorithm MSE Epochs

DGN 0.002 2000

Random forest 2.39 -
MLP 2.13 -
Stochastic decision tree 2.11 -
Gradient boosted tree 1.44 -
TabNet-S 1.25 55000
Adaptive neural tree 1.23 -
TabNet-M 0.28 55000
TabNet-L 0.14 55000
Gaussian Gated Linear Network 0.10 2000

Table S1: Test MSE and the number of passes over the dataset (ie, epochs) for DGN versus
previously published methods on the SARCOS inverse dynamics dataset [73, 91, 92]. DGN
obtains the best result, by a factor of 50.

Catastrophic Forgetting (permuted MNIST)718

Hyerparameter selection. We select the hyperparameters for the three methods719

utilizing a grid search. The swept and the chosen parameters are displayed in Table S2.720

Learning curves. In Fig. S1 we display the test performance of previously learned721

tasks (columns) as a function of the training across multiple tasks. To reduce clutter, a722
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Model learning rate dropout regularization const
DGN 10−4, 10−3, 10−2, 10−1 – –
MLP 10−6, 10−5, 10−4, 10−3 Yes, No –
EWC 10−6, 10−5, 10−4, 10−3 Yes, No 102, 103, 104

Table S2: Parameters swept during grid search. The best parameters (shown in bold) are
the ones that maximize the average test accuracy over 20 random seeds.

subset of the tasks (1, 2, 4, and 8, out of 10) are shown. The top left plot (train and test723

on task 1) shows that DGNs learns the first task much faster than all other methods.724

The plots to the right of that show retention on task 1 while the network is sequentially725

trained on subsequent tasks. MLP performances drop drastically after learning a few726

new tasks, while DGN and EWC show little forgetting. This is a remarkable feat for727

DGNs, which have no access to task boundaries and no explicit memory of previously728

learned tasks. EWC, on the other hand, has both. If we look at the four diagonal729

plots, we see that DGN learns new tasks faster than all other methods, although the730

difference gets smaller as more tasks are learned.731

The final accuracies across the diagonal correspond to the left panel of Figure 3732

whereas the final accuracies across the first row correspond to the right panel.733
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Figure S1: Retention results for permuted MNIST. Models are trained sequentially on 8
tasks (rows) and evaluated on all previously encountered tasks (columns). For example, the
top row indicates performance on task 1 after being trained sequentially on tasks 1, 2, 4 and
8. Each model trains for one epoch per task. Error bars, indicated by the thickness of the
lines, denote 95% confidence levels over 20 random seeds.
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Pseudocode734

Algorithm S1 DGN for quadratic loss

1: Input: network architecture: number of layers K ∈ N,
number of neurons in layer k {nk ∈ N},
number of branches per neuron i in layer k {Bk,i ∈ N}

2: Input: weights {wbk,ij ∈ R}
3: Input: gating parameters {vbk,ij ∈ R}, {θbk,i ∈ R}
4: Input: input x = (x1, ..., xn) ∈ Rn

5: Input: target r∗ ∈ R
6: Input: learning rate η ∈ (0, 1)
7: Input: update ∈ {true, false} (enables learning)
8: Output: Target prediction r̂ = rK,1 (output of neuron in last layer K)
9: r0,0 ← 1; n0 ← n; r0,i = xi for i ∈ {1, ..., n}

10: for k ∈ {1, . . . , K} do {over layers}
11: rk,0 ← 1 {bias}
12: for i ∈ {1, . . . , nk} do {over neurons}
13: for b ∈ {1, . . . , Bk,i} do {over branches}
14: gbk,i ← Θ(

∑nk−1

j=0 vbk,ijxj − θbk,i)
15: rk,i ←

∑Bk,i

b=1 g
b
k,i

∑nk−1

j=0 wbk,ijrk−1,j

16: if update then
17: for b ∈ {1, . . . , Bk,i} do {over branches}
18: if gbk,i > 0 then
19: for j ∈ {1, ..., nk−1} do {over neurons in previous layer}
20: wbk,ij ← wbk,ij − η (rk,i − r∗)wbk,ijrk−1,j

21: return rK,1

where Θ(·) is the Heaviside step function (Θ(z) = 1 for z > 0 and Θ(z) = 0 otherwise).735
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Algorithm S2 DGN for Bernoulli data

1: Input: network architecture: number of layers K ∈ N,
number of neurons in layer k {nk ∈ N},
number of branches per neuron i in layer k {Bk,i ∈ N}

2: Input: weights {wbk,ij ∈ R}
3: Input: gating parameters {vbk,ij ∈ R}, {θbk,i ∈ R}
4: Input: precision ε ∈ (0, 0.5)
5: Input: input x = (x1, ..., xn) ∈ Rn

6: Input: target r∗ ∈ {0, 1}
7: Input: learning rate η ∈ (0, 1)
8: Input: update ∈ {true, false} (enables learning)
9: Output: Target prediction r̂ = rK,1 (output of neuron in last layer K)

10: r0,0 ← σ(1); n0 ← n; r0,i = clip1−ε
ε (σ(xi)) for i ∈ {1, ..., n}

11: for k ∈ {1, . . . , K} do {over layers}
12: rk,0 ← σ(1) {bias}
13: for j ∈ {1, . . . , nk−1} do {over neurons in layer below}
14: hk−1,j ← σ−1(rk−1,j)
15: for i ∈ {1, . . . , nk} do {over neurons}
16: for b ∈ {1, . . . , Bk,i} do {over branches}
17: gbk,i ← Θ(

∑nk−1

j=0 vbk,ijxj − θbk,i)
18: hk,i ←

∑Bk,i

b=1 g
b
k,i

∑nk−1

j=0 wbk,ijhk−1,j

19: rk,i ← clip1−ε
ε σ(hk,i)

20: if update then
21: for b ∈ {1, . . . , Bk,i} do {over branches}
22: if |r∗ − σ(hk,i)| > ε then
23: for j ∈ {1, ..., nk−1} do {over neurons in previous layer}
24: wbk,ij ← wbk,ij − η(rk,i − r∗)hk−1,j

25: return rK,1

where clipba(·) clips values between a and b,

clipba(y) ≡


a y < a

y a < y < b .

b b ≤ y
(12)

σ(·) is the sigmoid function, σ(z) = ez/(1 + ez), and σ−1(·), its inverse, is given by736

σ−1(y) = log(y/(1− y)).737
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