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Abstract11

The dominant view in neuroscience is that changes in synaptic weights underlie12

learning. It is unclear, however, how the brain is able to determine which synapses13

should change, and by how much. This uncertainty stands in sharp contrast to deep14

learning, where changes in weights are explicitly engineered to optimize performance.15

However, the main tool for doing that, backpropagation, is not biologically plausible,16

and networks trained with this rule tend to forget old tasks when learning new ones.17

Here we introduce the Dendritic Gated Network (DGN), a variant of the Gated Linear18

Network [1, 2], which offers a biologically plausible alternative to backpropagation.19

DGNs combine dendritic “gating” (whereby interneurons target dendrites to shape20

neuronal response) with local learning rules to yield provably efficient performance.21

They are significantly more data efficient than conventional artificial networks and22

are highly resistant to forgetting, and we show that they perform well on a variety23

of tasks, in some cases better than backpropagation. The DGN bears similarities24

to the cerebellum, where there is evidence for shaping of Purkinje cell responses by25

interneurons. It also makes several experimental predictions, one of which we validate26

with in vivo cerebellar imaging of mice performing a motor task.27
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1 Introduction28

A hallmark of intelligent systems is their ability to learn. Humans, for instance, are29

capable of amazing feats – language acquisition and abstract reasoning being the most30

notable – and even fruit flies can learn simple reward associations [3, 4]. It is widely31

believed that learning is implemented via synaptic plasticity. But which synapses32

should change in response to, say the appearance of a reward, and by how much? This33

is especially hard to answer in humans, who have about 1014 synapses, but it is hard34

even in fruit flies, which have about 108 – corresponding to 100 million adjustable35

parameters.36

One answer to this question is known: introduce a loss function (a function that37

measures some aspect of performance, with higher performance corresponding to lower38

loss), compute the gradient of the loss with respect to the weights (find the direction39

in weight space that yields the largest improvement in performance), and change the40

weights in that direction. If the weight changes are not too large, this will, on average,41

reduce the loss, and so improve overall performance.42

This approach has been amazingly successful in artificial neural networks, and has in43

fact driven the deep learning revolution [5]. However, the algorithm for computing the44

gradient in deep networks is not directly applicable to biological systems as first pointed45

out by [6, 7] (see also recent reviews, [8–10]). First, to implement backpropagation46

[11–13], referred to simply as backprop, neurons would need to know their outgoing47

weights. Second, backprop requires two stages: a forward pass (for computation) and48

a backward pass (for learning). Moreover, in the backward pass an error signal must49

propagate from higher to lower areas, layer by layer (Fig. 1A), and information from the50

forward pass must remain in the neurons. However, biological neurons do not know51

their outgoing weights, and there is no evidence for a complicated, time-separated52

backward pass.53

Backprop also leads to another problem, at least in standard deep learning setups:54

it adapts to the data it has seen most recently, so when learning a new task it forgets55

old ones [14]. This is known as catastrophic forgetting, and prevents networks trained56

with backprop to display the lifelong learning that comes so easily to essentially all57

organisms [15,16].58

Driven in part by the biological implausibility of backprop, there have been several59

proposals for architectures and learning rules that might be relevant to the brain.60

These include feedback alignment [17,18], creative use of dendrites [19,20], multiplexing61

[21], and methods in which the error signal is fed directly to each layer rather than62

propagating backwards from the output layer [22–29]. A particularly promising method63

that falls into the latter category is embodied in Gated Linear Networks [1, 2]. These64

networks, which were motivated from a machine learning rather than a neuroscience65

perspective, have obtained state-of-the-art results in regression and denoising [30],66

contextual bandit optimization [31], and transfer learning [32].67

In Gated Linear Networks, the goal of every neuron, irrespective of its layer, is to68

predict the target output based on the input from the layer directly below it. This is69

very different from backprop, in which neurons in intermediate layers extract features70

that make it easier for subsequent layers to predict the target (compare Figs. 1A and B).71
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Figure 1: Comparison of multi-layer perceptrons (MLPs) and Dendrtic Gated Networks
(DGNs). In all panels the blue filled circles at the bottom correspond to the input. A. MLP.
Blue arrows show feedforward computations; red arrows show the error propagating back
down. B. DGN. As with MLPs, information propagates up, as again shown by the blue
arrows. However, rather than the error propagating down, each layer receives the target
output, which it uses for learning. C. A single postsynaptic neuron in layer k of a DGN,
along with several presynaptic neurons in layer k − 1. Each branch gets input from all the
presynaptic neurons (although this is not necessary), and those branches are gated on and
off by inhibitory interneurons which receive external input. The white interneuron is active,
so its corresponding branch is gated off, as indicated by the light gray branches; the gray
neurons are not active, so their branches are gated on.

Gated Linear Networks are thus particularly suitable for biologically plausible learning:72

every neuron is essentially part of a shallow network, with no hidden layers, for which73

the delta rule [33] – a rule that depends only on presynaptic and postsynaptic activity,74

the latter relative to the target activity – is sufficient to learn.75

To implement these local learning rules, the target activity is sent to every neuron,76

in every layer of the network (Fig. 1B, red arrows). This is typical of a large class of77

learning rules [22, 23, 25–29]. Completely atypical, though, is the role of the external78

input. It’s used for gating the weights: each neuron has a bank of weights at its79

disposal, and the external input determines which one is used. For example, a neuron80

might use one set of weights when the visual input contains motion cues predominantly81

to the right; another set of weights when it contains motion cues predominantly to the82

left; and yet another when there are no motion cues at all.83

Endowing each neuron with a library of weights is, of course, highly inconsistent84

with what we see in the brain. So instead we gate dendritic branches on and off,85

using inhibitory neurons, in an input-dependent manner (Fig. 1C). We thus refer to86

these networks as Dendritic Gated Networks (DGNs). Dendritic gating allows DGNs87

to represent essentially arbitrary nonlinear functions. Moreover, gating makes DGNs88

especially resistant to forgetting. In particular, when data comes in sufficiently separate89

“tasks”, they can learn new ones without forgetting the old. Finally, the loss is a convex90
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function of the weights for each unit (see Supplementary Methods), as it is in Gated91

Linear Networks [1]. Convexity is an extremely useful feature, as it enables DGNs, like92

the Gated Linear Networks on which they are based, to learn (provably) efficiently.93

Below we describe multi-layer Dendritic Gated Networks in detail – both the ar-94

chitecture and the learning rule. We then train them on three tasks: one on which95

networks trained with backprop typically exhibit catastrophic forgetting, and two rele-96

vant to the cerebellum. Finally, we show experimentally that in the cerebellum gating97

remains relatively stable over time – a key prediction of our model. We map the pro-98

posed learning rule and the associated architecture to cerebellum because 1) the climb-99

ing fibers provide a feedback; 2) its input-output function is relatively linear [34–36];100

and 3) molecular layer interneurons could act as a gate [37–46].101

2 Results102

2.1 Dendritic Gated Networks103

Dendritic Gated Networks, like conventional deep networks, are made up of multiple104

layers, with the input to each layer consisting of a linear combination of the activity105

in the previous layer. Unlike conventional deep networks, though, the weights are con-106

trolled by external input, via gating functions, denoted g(x) (Fig. 1B); those functions107

are implemented via dendritic branches (Fig. 1C).108

This results in the following network equations. The activity (i.e., the instantaneous
firing rate) of the ith neuron in layer k, denoted rk,i, is

rk,i = φ

Bk,i∑
b=1

gbk,i(x)

nk−1∑
j=0

wbk,ijhk−1,j

 , (1a)

with the synaptic drive, hk−1,j , given in terms of rk−1,j as

hk−1,j = φ−1
(
rk−1,j

)
. (1b)

Here φ(·) is the activation function (either identity or sigmoid), x is the input of the
network (x is an n-dimensional vector, x = (x1, x2, ..., xn)), rk,i is the activity of ith

neuron on layer k (with rk,0 set to 1 to allow for a bias term), Bk,i is the number of
branches of neuron i in layer k, wbk,ij is the weight from neuron j in layer k − 1 to the

bth branch of neuron i in layer k, nk is the number of neurons in layer k, and gbk,i(x) is

the binary gating variable; it is either 1 (in which case the bth branch of the ith neuron
is gated on) or 0 (in which case it is gated off). There are K layers, so k runs from
1 to K. The input to the bottom layer is x. The mapping from the input, x, to the
gating variable, gbk,i(x), is not learned; instead, it is pre-specified, and does not change
with time. In all of our simulations we use random half-space gating [1]; that is,

gbk,i(x) =

{
1 if vbk,i · x ≥ θbk,i
0 otherwise

(2)
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where vbk,i and θbk,i are sampled randomly and kept fixed throughout learning (see109

Methods), and “·” is the standard dot product.110

In Dendritic Gated Networks, the goal of each neuron is to predict the target,
denoted r∗. To do that, the weights, wbk,ij , are modified to reduce the loss, `k(r

∗, rk,i).
For weight updates we use gradient descent,

∆wbk,ij = −η
∂`(r∗, rk,i)

∂wbk,ij
(3)

where η > 0 is the learning rate, and the updates are performed after each sample. The
precise form of the loss can influence both the speed of learning and the asymptotic
performance, but conceptually we should just think of it as some distance between r∗

and rk,i. In most of the simulations, we assume φ is the identity (rk,i = hk,i) and we
use quadratic loss

`(r∗, rk,i) =
1

2
(r∗ − rk,i)2 , (4)

so the update rule becomes

∆wbk,ij = η gbk,i(x)(r∗ − rk,i)hk−1,j . (5)

This has the form of a gated version of the delta rule [33]. See Methods, Sec. 4.1 for111

the alternative formulation, which we use for classification problems.112

2.2 Simulations113

Equations (1) and (2) for the network dynamics and Eq. (3) for learning constitute114

a complete description of our model. For a given problem, we just need to choose a115

target input-output relationship (a mapping from x to r∗) and specify the loss functions,116

`(r∗, rk,i). Here we consider two tasks. The first two (catastrophic forgetting) tasks117

are classification, for which we use a sigmoid activation for φ and log loss (Methods,118

Sec. 4.1); the remaining (cerebellar) tasks are regression, where we use an identity119

activation and quadratic loss (Sec. 2.1).120

DGNs can mitigate catastrophic forgetting.121

Animals are able to acquire new skills throughout life, seemingly without compromising122

their ability to solve previously learned tasks [15,16]. Standard networks do not share123

this ability: when trained on two tasks in a row, they tend to forget the first one124

(see Fig. 2, second row). This phenomenon, known as “catastrophic forgetting”, is an125

old problem [47–49], and many algorithms have been developed to address it. These126

algorithms typically fall into two categories. The first involves replaying previously seen127

tasks during training [49–51]. The second involves explicitly maintaining additional sets128

of model parameters related to previously learned tasks. Examples include freezing a129

subset of weights [52, 53], dynamically adjusting learning rates [54], and augmenting130

the loss with regularization terms with respect to past parameters [55–57]. A limitation131

of these approaches (aside from additional algorithmic and computational complexity)132

is that they require task boundaries to be provided or accurately inferred.133
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MLP

DGN

Learning onset

Task A Task B

Training
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A 50%, B 50% A 100%, B 46%

A 100%, B 50%
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Figure 2: Comparison of the DGN to a standard multi-layer perceptron (MLP) trained with
backprop. Each point on the square has to be classified as “red” (“Class 1”) or “blue”
(“Class 0”). We consider a scenario common in the real world (but difficult for standard
networks): the data comes in two separate tasks, as shown in the first row. We trained a
2-layer MLP (second row) and a 2-layer DGN (third row) on the two tasks. The output of
the network is the probability of each class, as indicated by color; the percentages report the
accuracy for each of the tasks. The MLP uses ReLU activation functions, so each neuron
has an effective gating; the boundaries of those gates are shown in gray. The boundaries
move with learning, and are plotted at the end of training of each of the tasks (white lines).
The boundaries of the DGN do not move, so we plot them only in the first column. After
training on Task A, most of the boundaries in the MLP are aligned at -45 degrees, parallel
to the decision boundaries, which allows the network to perfectly separate the two classes.
In the DGN, the boundaries do not change, but the network also perfectly separates the two
classes. However, after training on Task B, the DGN retains high performance on Task A
(91%), while the MLP’s performance drops to 66%. That’s because many of the boundaries
changed to the orthogonal direction (45 degrees). For the DGN, on the other hand, changes
to the network were much more local, allowing it to retain the memory of the old task (see
samples from Task A overlaid on all panels) while accommodating the new one. The MLP
has 50 neurons in the hidden layer; the DGN has 5 neurons on 10 dendritic branches in the
hidden layer.
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Unlike contemporary neural networks, the DGN architecture and learning rule is134

naturally robust to catastrophic forgetting without any modifications or knowledge of135

task boundaries. In Fig. 2 we illustrate the mechanism behind this robustness, and136

show how it differs from a standard multi-layer perceptron on a single example. To137

demonstrate this in a more challenging task, we train a DGN on the pixel-permuted138

MNIST continual learning benchmark [55, 58]. In this benchmark, the network has to139

learn random permutations of the input pixels, with the random permutation changing140

every 60,000 trials (see Methods for additional details). We compare the DGN to a141

multi layer perceptron (MLP) with and without elastic weight consolidation (EWC) [55]142

as per the original papers [2,55]. EWC is a highly-effective method explicitly designed143

to prevent catastrophic forgetting by storing parameters of previously seen tasks. How-144

ever, it has a much more complicated architecture, and it must be supplied with task145

boundaries, so it receives more information than the DGN.146

Because MNIST has 10 digits, we train 10 different DGNs. The alternative would147

be a single DGN where each unit has a 10 dimensional output corresponding to the148

class probabilities. However, this setting is not as biologically plausible, so we did not149

use it. Each of the 10 networks contains 3 layers, with 100, 20, and 1 neurons per layer,150

and has 10 dendritic branches per neuron. The targets are categorical (1 if the digit151

is present, 0 if it is not), so we use Bernoulli log loss rather than quadratic loss (see152

Methods, Sec. 4.1). We use 1000, 200, and 10 neurons per layer for the MLP (so that153

the number of neurons match the number used for the DGN), with cross entropy loss,154

both with and without elastic weight consolidation, and optimize the learning rates155

separately for each network.156

Figure 3 shows the learning and retention performance of the DGN, with the MLP157

and EWC networks included primarily as benchmarks (recall that neither is biologically158

plausible). In Fig. 3A we plot performance on each task for the three networks; as can159

be seen, performance is virtually identical. In Fig. 3B we investigate resistance to160

forgetting, by plotting the performance on the first task as the nine subsequent tasks161

are learned. The EWC network retains its original performance almost perfectly, the162

MLP forgets rapidly, and the DGN is in-between. It is not surprising that the EWC163

does well, as it was tailored to this task, and in particular it was explicitly given task164

boundaries. Somewhat more surprising is the performance of the DGN, which had none165

of these advantages but still forgets much more slowly than the MLP. The DGN also166

learns new tasks more rapidly than either the EWC or MLP networks (Supplementary167

Figure S1), possibly because of its convex loss function.168

Mapping DGNs to the Cerebellum169

For the next two simulations we consider computations that can be mapped onto cere-170

bellar circuitry. We focus on the cerebellum for several reasons: it is highly experimen-171

tally accessible; its architecture is well characterized; there is a clear feedback signal172

(the climbing fiber) to the Purkinje cells (the cerebellar neurons principally involved173

in learning); its input-output function is relatively linear [34–36]; and molecular layer174

interneurons play a major role in shaping Purkinje cell responses [37–43, 45], and can175

influence climbing fiber-mediated dendritic calcium signals in Purkinje cells [44, 46].176

Both classic and more modern theoretical studies in the cerebellum have focused177
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A B

Figure 3: Learning and retention on the permuted MNIST task. The tasks are learned
sequentially in a continual learning setup. A. Performance (on test data) for each of the 10
tasks, where a “task” corresponds to a random permutation of the pixels. B. Performance on
the first task after each of nine new tasks is learned. As discussed, the MLP is especially bad
at this task. The EWC is much better, to a large extent because it was provided with extra
information: the task boundaries. Even though the DGN was not given that information,
it forgets a factor of two more slowly than the MLP. Error bars in both plots denote 95%
confidence over 20 random seeds.

on the the cerebellar cortex, modelling it as a one-layer feedforward network [59–63].178

In this view, the parallel fibers project to Purkinje cells, and their synaptic weights are179

adjusted under the feedback signal from the climbing fibers. This picture, however, is an180

over-simplification, as Purkinje cells do not directly influence downstream structures.181

Instead, they project to the cerebellar nucleus neurons, which constitute the ultimate182

output of the cerebellum (see Fig. 4). The fact that Purkinje cells form a hidden183

layer, combined with the observed plasticity in the Purkinje cell to cerebellar nucleus184

synapses [64–68], means most learning rules tailored to one-layer networks, including185

the delta rule, cannot be used to train the network.186

We propose instead that the cerebellum acts as a two layer DGN comprised of187

Purkinje cells as the first, hidden layer and the cerebellar nucleus as the second, output188

layer (Fig. 4). Parallel fibers provide the input to both the input layer (Purkinje189

cells) as well as the gates, represented by molecular layer interneurons, that control190

learning in individual Purkinje cell dendrites. For the second layer of the DGN, we191

use a non-gated linear neuron rather than a gated neuron. This is because the unique192

biophysical features of cerebellar nuclear neurons allow them to integrate input linearly193

[69]. Note that we can keep the DGN formulation given in Eq. (1); in the second layer194

we just use one branch (B2,i = 1) which is always gated on (g12,i(x) = 1). Finally,195

the climbing fibers provide the feedback signal to Purkinje cells and cerebellar nuclear196

neurons. In our formulation, climbing fiber feedback signals the target, allowing each197

neuron to compute its own local error by comparing the target to its output (rk,i).198

This formulation is a departure from the strict error-coding role that is traditionally199

attributed to climbing fibers, but is consistent with a growing body of evidence that200

climbing fibers signal a variety of sensorimotor and cognitive predictions [70].201
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Figure 4: The cerebellum as a two layer DGN. Contextual information from the mossy
fiber (MF)/granule cell (GC) pathway is conveyed as input to the network via parallel
fibers (PFs) that form synapses onto both the dendritic branches of Purkinje cells and
molecular layer interneurons (MLIs). The inhibitory MLIs act as input-dependent gates of
Purkinje cell dendritic branches. Purkinje cells converge onto the cerebellar nuclear neurons
(CbNs) and constitute the output of the cerebellar network. The climbing fibers (CFs, red)
originating in the inferior olive (IO) convey the feedback signal that is used to tune both
the Purkinje cells, based on which inputs are gated on or off, and also the CbNs. Excitatory
and inhibitory connections are depicted as round- and T-ends, respectively. Dashed lines
represent connections not included in the model.

DGNs can learn inverse Kinematics202

The cerebellum is thought to implement inverse motor control models [71, 72]. We203

therefore applied our proposed DGN network to the SARCOS benchmark [73], which is204

an inverse kinematics dataset collected using a 7 degree-of-freedom robot arm (Fig. 5).205

The goal is to learn an inverse model, and predict 7 joint torques given the joint206

positions, velocities, and accelerations for each of the 7 joints (corresponding to a 21207

dimensional input).208

The target output, r∗, is the desired torque, given the 21-dimensional input. There209

are seven joints, so we train seven different networks, each with its own target output.210

We use DGN networks with 20 Purkinje cells, each having 5000 branches, and minimize211

the quadratic loss (4).212

In Fig. 5 we plot the target torques for each joint (dots) along with the predictions213
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Figure 5: Sarcos experiment. DGNs can solve a challenging motor control task: predicting
torques from the proprioceptive inputs. The data comes from a SARCOS dexterous robotic
arm [73], pictured on the left. The inputs are position, velocity and acceleration of the joints
(21 dimensional variables); the targets are the desired torques (7 dimensional). Example
targets (normalized to keep the training data between 0 and 1) are shown with dots, the
lines are the output of our network. Performance is very good; only rarely is there a visible
difference between the dots and the lines.

of the DGN (lines; chosen for ease of comparison as there is no data between the214

points). The lines follow the points very closely, even when there are large fluctuations,215

indicating that the DGN is faithfully predicting torques. The performance of our216

network (mean squared error on test data in the original torque units) exceeds that of217

most machine learning algorithms (Supplementary Table S1) while using fewer (or an218

equal number of) samples to learn. This illustrates the power of DGNs; we now turn to219

a cerebellar task much more typical of computational and experimental neuroscience.220

Vestibulo-ocular reflex, and adaptation to gain changes221

When an animal moves its head, to maintain a stable image on the retina it moves its222

eyes in the opposite direction. This is known as the vestibulo-ocular reflex (VOR), and223

a key feature of it is that it is plastic: animals can adapt quickly when the relationship224

between the head movement and visual feedback is changed, as occurs as animals grow225

or are given corrective lenses. VOR gain adaptation relies critically on the cerebellum,226

and has been used to study cerebellar motor learning for decades [74–78].227

We thus applied our DGN network to model learning of VOR gain changes. The228

gain, denoted G, is the ratio of the desired eye velocity to the head velocity (multi-229

plied by −1 because the eyes and head move in opposite direction, to keep with the230

convention that the gain is reported as a positive number). When the gain is (artifi-231

cially) changed, at first animals move their eyes at the wrong speed, but after about232

15 minutes they learn to compensate [76,77].233

We trained our network on a head velocity signal of the form

s(t) = sin(ω1t) + sin(ω2t) , (6)

with ω1 = 13.333 and ω2 = 20.733 (corresponding to 2.12 and 3.30 Hz, respectively).
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This was chosen to mimic, approximately, the irregular head velocities encountered
in natural viewing conditions. Following Clopath et. al. [79], we assumed that the
Purkinje cells receive delayed versions of this signal. The ith input signal, xi(t), which
arrives via the parallel fibers, is modelled as

xi(t) = s(t− τi) , (7)

with delays, τi, spanning the range 50-300 ms. The cerebellum needs to compute the234

scaled version of the eye velocity: r∗(t) = Gs(t) (as mentioned above, the actual eye235

movement is −r∗(t), but we follow the standard convention). Learning was online, and236

we updated the weights every 500 ms, to approximately match the climbing fiber firing237

rate [80].238

The DGN contained 20 Purkinje cells, with 10 branches each. As a baseline, we239

trained an MLP with the same number of weights (resulting in 200 hidden neurons).240

We used quadratic loss for both the DGN and the MLP and, as in [79], we assumed241

n = 100 parallel fibers and a single output. Each branch received input from all 100242

parallel fibers. Gating (Eq. (2)) was controlled by xi(t) (given in Eq. (7)), refelecting243

the parallel fiber influence on molecular layer interneuronss (Fig. 4); see Methods for244

details. Given the timescale of the signal (2-3 Hz), any individual branch was gated245

on for about 500 ms at a time. The networks were pre-trained on a gain, G, of 1. We246

implemented four jump changes: first to 0.7, then back to 1.0, then to 1.3, and, finally,247

back to 1.0; in all cases, for 30 minutes (Fig. 6A).248

Performance for both the DGN and the MLP were comparable and, after suitably249

adjusting the learning rates, the networks were able to learn in 15-20 minutes (Fig. 6A,250

B). Figure 6C shows the target and predicted head velocities immediately before and251

after each gain change. Not surprisingly, immediately after a gain change, the network252

produces output with the old gain.253

Although both the DGN and the MLP solve this task, their internal mechanisms are254

remarkably different. Figure 6D shows the connection strengths between parallel fibers255

(xi(t), Eq. (7)) and Purkinje cells, after learning, as a function of the delay, τi. Every256

branch of the DGN (top panel; blue) develops a smooth connectivity pattern: parallel257

fibers that have similar delays have similar strengths. The smoothness of weights versus258

delay constitutes a strong prediction of our model.259

2.3 Testing predictions of the DGN in behaving animals.260

A critical feature of our model is that the gates (in the case of the cerebellum, the261

molecular layer interneurons) should remain stable over learning, or at least be more262

stable than other parts of the circuit, such as climbing fiber inputs to Purkinje cells. To263

test this, we performed simultaneous two-photon calcium imaging of molecular layer264

interneurons (MLIs) and Purkinje cell dendrites (Fig. 7A,B) in awake behaving head-265

fixed mice. Imaging occurred while the mouse was learning to make an association266

between a tone cue and a reward (Fig. 7C; note the absence of licks between the267

cue and the reward in the first 18 trials, before learning). To assess the stability268

of responses across learning, we computed a trial-wise population vector response to269

reward delivery (vector of mean response in 1 second following reward delivery for each270
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Figure 6: VOR adaptation task. We trained the networks on gain G = 1, then changed
the gain every 30 minutes. Results are shown for the Dendritic Gated Network (DGN)
and a multi-layer perceptron (MLP). A. Dashed lines are true gain versus time; blue and
purple lines are gains computed by the DGN and MLP, respectively. For both networks,
gains were inferred almost perfectly after 15-20 minutes. B. Performance, measured as
mean squared error between the the true angular velocity, Gs(t) (Eq. (6)), and the angular
velocity inferred by the networks. Same color code as panel A. C. Comparison of target
angular velocity versus time (black) to that predicted by the DGN (blue). (A plot for the
MLP is similar.) Before the gain change, the two are almost identical; immediately after the
gain change, the network uses the previous gain. D. Top panel: Parallel fiber weights for the
DGN network versus delay, τi (Eq. (7)). Each panel shows 10 branches; 5 Purkinje cells are
shown (chosen randomly out of 20). The weights vary smoothly with delay. Bottom panel:
MLP weight profile, except that dendritic brances are replaced by the whole neuron (all 100
parallel fibers). For the MLP, the weights with similar delays are effectively uncorrelated.
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Figure 7: Testing experimental predictions of DGN during learning of cue-reward association.
A. Simultaneous multi-plane 2-photon imaging of molecular layer interneurons (red hues)
and Purkinje cell dendrites (blue hues) expressing GCaMP7f. Images were acquired across
5 planes at an effective rate of 9.7 Hz. B. Example traces of simultaneously recorded MLIs
(red, top) and Purkinje cell dendrites (blue, bottom). C. Licking responses of mice during
initial 125 trials of cue-reward pairing showing licking on individual trials (top) and mean
lick probability (bottom). D. Trial-wise reward delivery responses in MLIs (left, n = 15) and
Purkinje cell dendrites (right, n = 67) calculated as mean response in 1 s window after reward
delivery. E. Similarity matrix of population vector response for MLIs (left) and Purkinje
cell dendrites (right). F. Mean pairwise correlations of population vector responses in MLIs
and Purkinje cell dendrites. MLIs responses exhibit greater trial-by-trial consistency. Data
are shown as mean± S.E.M.

neuron; Fig. 7D). We compared the stability of these population response vectors in271

MLIs and Purkinje cell dendrites (reflecting climbing fiber input) over the course of the272

first 125 cue-reward pairing trials (Fig. 7E). The MLI population vector response was273

significantly more stable across these learning trials than the corresponding population274

response vector in Purkinje cell dendrites (Fig. 7F), consistent with the tendency for275

DGN gates to remain stable while other elements evolve with learning.276

3 Discussion277

A critical open question in neuroscience is: what learning rules ensure that synaptic278

strengths are updated in a way that improves performance? Answering this is difficult279
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in large part because of the way we think about computation, which is that networks280

map input to output in stages, with the input gradually transformed, until eventually,281

in the output layer, the relevant features are easy to extract. There is certainly some282

evidence for this. It is, for example, much harder to extract which face a person is283

looking at from activity in visual area V1 than in fusiform face area [81, 82]. While284

this strategy for computing is reasonable, it has a downside: the relationship between285

activity in intermediate layers and activity in the output layer is highly nontrivial,286

which makes it especially hard for the brain to determine how weights in intermediate287

layers should change.288

Here we propose that the brain might take a different approach, one based on289

Dendritic Gated Networks, or DGNs, which is a variant of the Gated Linear Network290

[1, 2]. With this architecture, each neuron is active for a relatively small region of the291

input space; for the rest, it is gated “off”. Each neuron receives its input from the292

layer below, as in conventional networks, but its goal is not to transform that input;293

instead, its goal is to predict the output of the whole network. That makes the role294

of every neuron transparent (all neurons in all layers are doing the same thing), which295

makes learning simple – all that is required is a delta rule.296

The ease of learning makes DGNs strong candidates for biological networks. In297

addition, we showed they are compatible with the architecture and function of the298

cerebellum, and that they perform well on three nontrivial tasks. Finally, we supplied299

preliminary experimental support for gating, which in the cerebellum we hypothesize300

is done by the molecular layer interneurons.301

DGNs make three strong predictions for the cerebellum. First, the activity of the302

molecular layer interneurons should depend solely on parallel fiber input and should303

not change with learning – or change very slowly relative to the timescale over which304

Purkinje cells learn, the latter measured in single trials [83]. This prediction is consis-305

tent with our in vivo imaging experiments. Second, dendritic branches should be in306

one of two states, determined by molecular layer interneuron activity: either a branch307

receives very little MLI input, so that it can transmit information from parallel fibers308

to Purkinje cells, or it receives very large MLI input, so that it cannot transmit infor-309

mation. Testing the second prediction is challenging, but could be addressed using a310

combination of cellular resolution all-optical stimulation and voltage imaging, a tech-311

nical feat that may soon be within reach [84, 85]. Third, for parallel fibers carrying312

delayed information about head position, the parallel fiber to Purkinje cell weights313

should be a smooth function of the delay (Fig. 6d, top panel).314

In summary, Dendritic Gated Networks are strong candidates for biological net-315

works – and not just in the cerebellum; they could be used anywhere there is approx-316

imately feedforward structure. They come with two desirable features: biologically317

plausible learning, and rapid, data-efficient learning. And they imply a novel role for318

inhibitory neurons, which is that they are used for gating dendritic branches on and319

off. Importantly, they make strong, experimentally testable, predictions, so we will320

soon know whether they are actually used in the brain.321
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4 Methods322

4.1 Model323

The network we use in our model is described in Eqs. (1) and (2), and the learning
rules are given in Eq. (3). In particular, Eq. (5) is used in all our simulations except for
MNIST, where the output is categorical. In that case, we bound neural activities so
they can represent probabilities. We use a standard sigmoid function, σ(z) = ez/(1 +
ez), albeit modified slightly,

φ(z) = clip1−εε

(
σ(z)

)
(8)

where clipba(·) clips values between a and b (so the right hand side is zero if σ(z) is324

smaller than ε or larger than 1− ε). Clipping is used for bounding the loss as well as325

the gradients; this helps with numerical stability, and also enables a worst-case regret326

analysis [1, 2]. We set ε to 0.01, so neural activity lies between values 0.01 and .99.327

The loss of neuron i in layer k in this case is given by

`(r∗, rk,i) = −r∗ log rk,i − (1− r∗) log
(
1− rk,i

)
. (9)

Consequently, the update rule for the weights, Eq. (3), is (after a small amount of
algebra)

∆wbk,ij = ηgbk,i(x)1(ε < rk,i < 1− ε)
(
r∗ − rk,i

)
hk−1,j (10)

where 1(·) is 1 when its argument is true and 0 otherwise. The fact that the learning
is zero when rk,i is outside the range [ε, 1 − ε] follows because dφ(z)/dz = 0 when z
is outside this range (see Eq. (8)). This ensures that learning saturates when weights
become too large (either positive or negative). However, this can cause problems if
the output is very wrong: when r∗ = 1 and rk,i < ε or r∗ = 0 and rk,i > 1 − ε. To
address this, we allow learning in this regime. We can do this compactly by changing
the learning rule to

∆wbk,ij = ηgbk,i(x)1(|r∗ − rk,i| > ε)
(
r∗ − rk,i

)
hk−1,j . (11)

Essentially, this rule says: stop learning when rk,i is within ε of r∗. See [86] for a328

complementary view of how categorical problems might be solved by gated neurons in329

the brain.330

For a compact summary of the equations (given as pseudocode), see Supplementary331

Algorithms S1 and S2.332

4.2 Simulations333

Simulations were written using JAX [87], the DeepMind JAX Ecosystem [88], and334

Colab [89].335
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Catastrophic Forgetting. We adopt the pixel-permuted MNIST benchmark [55,336

58], which is a sequence of MNIST digit classification tasks with different pixel per-337

mutations. Each task consists of 60,000 training images and 10,000 test images, all338

images are deskewed. Models are trained sequentially across 10 tasks, performing a339

single pass over each. We provide the implementation details of the baselines below.340

We display the parameters swept during grid search in Supplementary Table S2.341

DGN. We use networks composed of 100 and 20 units in the hidden layers and342

a single linear neuron layer for the output. Each neuron in the hidden layer has 10343

dendritic branches. The output of the network is determined by the last neuron.344

MNIST has 10 classes, each corresponding to a digit. Therefore, we utilize 10 DGN345

networks, each encoding the probability of a distinct class. Each of these networks are346

updated during training using a learning rate of 10−2. During testing, the class with347

the maximum probability is chosen. Images are scaled and shifted so that the input348

range is [−1, 1]. The gating vectors, vbk,i, are chosen randomly on the unit sphere,349

which can be achieved by sampling from an isotropic Normal distribution and then350

dividing by the L2 norm. The biases, θbk,i are drawn independently from a centred351

normal distribution with standard deviation 0.05.352

MLP and EWC. We use a ReLu network with 1000 and 200 neurons in the hidden353

layers and 10 linear output units with cross entropy loss. In this setting, the MLP354

and EWC have the same number of neurons as DGN but fewer plastic weights in355

total. We use the ADAM optimization method [90] with a learning rate of 10−4 (see356

Supplementary Table S2 for details of the hyperparameter optimization), in conjunction357

with dropout. We use mini-batches of 20 data points. For EWC, we draw 100 samples358

for computing the Fisher matrix diagonals and set the regularization constant to 103.359

Inverse Kinematics. Each DGN network has 20 Purkinje cells with 5000 branches360

each. We use a quadratic loss (4) with a learning rate η = 10−5 for 2000 epochs (2000361

passes over the dataset). The inputs are centered at 0 and scaled to unit variance per362

dimension, the targets are scaled so that they lie between 0 and 1. The reported MSEs363

are computed on the test set based on inverse transformed predictions (thus undoing364

the target scaling). The gating parameters are chosen in the same way as for the Mnist365

simulations (see above).366

We discovered that the the training set of the SARCOS dataset (downloaded from367

http://www.gaussianprocess.org/gpml/data/ on 15 December 2020) includes test368

instances. To the best of our knowledge, other recent studies using the SARCOS369

dataset [91, 92] reported results with this train/test setting. This means that the re-370

ported errors are measures of capacity rather than generalization. We compare the371

performance of DGN against the best known SARCOS results in Supplementary Ta-372

ble S1 using the existing train/test split. If we exclude the test instances from the373

train set, we get an MSE for the DGN of 0.84 using the same network setting and374

parameters.375

VOR. The gating parameters vbk,ij and θbk,i (Eq. (2)), were drawn independently from376

the standard normal distribution. Learning rate was η = 10−5 for DGN and η = 0.02377

for MLP.378
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4.3 Animal experiments379

Animal housing and surgery All animal procedures were approved by the lo-380

cal Animal Welfare and Ethical Review Board and performed under license from the381

UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986 and382

generally followed procedures described previously [93]. Briefly, we used PV-Cre mice383

(B6;129P2-Pvalbtm1(cre)Arbr/J) [94] crossed with C57/BL6 wild type mice. Mice384

were group housed before and after surgery and maintained on a 12:12 day-night cy-385

cle. Surgical procedures were identical to those described in [93], except that we in-386

jected Cre-dependent GCaMP7f (pGP-AAV-CAG-FLEX-jGCaMP7f-WPRE [serotype387

1]; [95]) diluted from its stock titer at 1:25. After mice had recovered from surgery,388

they were placed under water restriction for at least 5 days during which time they389

were acclimated to the recording setup and expression-checked. All mice were main-390

tained at 80-85 percent of their initial weight over the course of imaging. Trained mice391

typically received all their water for the day from reward during the behavioral task,392

while näıve mice were supplemented to 1 g water per day with Hydrogel.393

Cue-reward association training Mice were trained on a conditioning protocol394

in which an auditory cue (4 kHz, 100 ms duration) was paired with a reward deliv-395

ered 500 ms after cue onset, similar to the conditioning paradigm described in [93].396

Responses of MLIs and PC dendrites to reward delivery were recorded and analyzed397

during the first 125 trials after initial cue-reward pairing to assess response consistency398

across the initial learning phase of this association.399

Two-photon calcium imaging, data acquisition, and processing Imag-400

ing experiments were performed using a 16x/0.8 NA objective (Nikon) mounted on a401

Sutter MOM microscope equipped with the Resonant Scan Box module. A Ti:Sapphire402

laser tuned to 930 nm (Mai Tai, Spectra Physics) was raster scanned using a resonant403

scanning galvanometer (8 kHz, Cambridge Technologies) and images were collected at404

512x256 pixel resolution over fields of view of 450x225 µm per plane. Volumetric imag-405

ing across 5 planes spaced by 10 µm (depth ranging 25-65 µm below pial surface) were406

performed using a P-726 PIFOC High-Load Objective Scanner (Physik Instruments)407

at an effective volume rate of 9.7 Hz. The microscope was controlled using ScanImage408

(Version 2015, Vidrio Technologies) and tilted to 10 degrees such that the objective409

was orthogonal to the surface of the brain and coverglass. ROIs corresponding to single410

MLIs and PC dendrites were extracted using a combination of Suite2p software [96]411

for initial source extraction and custom-written software to merge PC dendritic ROIs412

across recording planes, which exhibited highly correlated calcium signals. Calcium413

signals corresponding to individual MLI somata and PC dendrites, which were easily414

distinguishable based on their shape, were computed as (F-F0)/F0 where F was the415

signal measured at each point in time and F0 is the 8th percentile of a 200 second416

rolling average surrounding each data time point). A neuropil correction coefficient of417

0.5 (50 percent of neuropil signal output from Suite2p) was applied to all ROIs. A418

range of baseline durations and neuropil correction coefficients were tested and varying419

these parameters did not alter the main findings. Fluorescence changes for each neuron420

were then z-scored over time to facilitate comparisons between individual neurons with421
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different baseline expression levels. Behavioural events and imaging synchronization422

signals were acquired using PackIO (see [93] for detailed description) and aligned offline423

using custom written scripts.424

Code availability. We provide pseudo code in Supplementary Algorithms S1 andS2.425

A simple python implementation can be accessed via https://github.com/deepmind/426

deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_427

network.ipynb.428

Data availability. The data that support the findings of this study are available429

from the corresponding authors upon reasonable request. Additional analysis made430

use of standard publicly available benchmarks including MNIST [97] and SARCOS431

(http://www.gaussianprocess.org/gpml/data/).432
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all-optical manipulation and recording of neural circuit activity with cellular res-667

olution in vivo. Nature methods 12, 140–146 (2015).668

[85] Roome, C. J. & Kuhn, B. Dendritic coincidence detection in purkinje neurons of669

awake mice. Elife 9, e59619 (2020).670

[86] Chung, S. & Abbott, L. Distributed local learning in context-switched linear671

networks (2021).672

[87] Bradbury, J. et al. JAX: composable transformations of Python+NumPy pro-673

grams (2018). URL http://github.com/google/jax.674

[88] Babuschkin, I. et al. The DeepMind JAX Ecosystem (2020). URL http://675

github.com/deepmind.676

[89] Ekaba, B. Google colaboratory. In: Building Machine Learning and Deep Learning677

Models on Google Cloud Platform. Apress, Berkeley, CA. (2019). URL https:678

//doi.org/10.1007/978-1-4842-4470-8_7.679

[90] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv680

preprint arXiv:1412.6980 (2014).681

[91] Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A. & Nori, A. Adaptive682

neural trees. In Chaudhuri, K. & Salakhutdinov, R. (eds.) Proceedings of the 36th683

International Conference on Machine Learning, vol. 97 of Proceedings of Machine684

Learning Research, 6166–6175 (PMLR, Long Beach, California, USA, 2019). URL685

http://proceedings.mlr.press/v97/tanno19a.html.686

[92] Arik, S. O. & Pfister, T. Tabnet: Attentive interpretable tabular learning. Pro-687

ceedings of the AAAI Conference on Artificial Intelligence (To Appear) (2021).688

[93] Kostadinov, D., Beau, M., Pozo, M. B. & Häusser, M. Predictive and reactive re-689
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Supplementary Methods703

Convexity704

If we ignore clipping, which has no effect on the convexity proof, the structure of the705

loss ` as a function of the weight vector w is as follows: `(r∗, r) with r = φ(h) and706

h = c ·w. Concretely, for neuron i in layer k, we have r = rk,i and h = hk,i ∈ R and707

w = w•
k,i• ∈ R(nk−1+1)×Bk,i and c = g•

k,i(x)hk−1,• ∈ R(nk−1+1)×Bk,i and · denotes sum708

over j and b. If `(r∗, φ(h))) is convex in h, then ` is also convex in w, since h is a linear709

function of w (e.g. [98] Sec.3.2.2). For quadratic loss (4) and φ being the identity,710

`(r∗, φ(h))) = 1
2(r∗−h)2 is obviously convex in h hence w. For log-loss (9) and φ(h) =711

σ(h) = 1/(1 + e−h), it is easy to show that ∂2`(r∗, φ(h)))/∂h2 = σ(h)(1 − σ(h)) > 0,712

hence, again, ` is convex in h and therefore also in w.713

Inverse Kinematics714

In Table S1 we compare the mean square error (MSE) obtained by DGN against715

baselines obtained from [30, 91, 92]. Note that, as mentioned in Methods, we (like716

others) used a test set that contained training examples.717

Algorithm MSE Epochs

DGN 0.002 2000

Random forest 2.39 -
MLP 2.13 -
Stochastic decision tree 2.11 -
Gradient boosted tree 1.44 -
TabNet-S 1.25 55000
Adaptive neural tree 1.23 -
TabNet-M 0.28 55000
TabNet-L 0.14 55000
Gaussian Gated Linear Network 0.10 2000

Table S1: Test MSE and the number of passes over the dataset (ie, epochs) for DGN versus
previously published methods on the SARCOS inverse dynamics dataset [73, 91, 92]. DGN
obtains the best result, by a factor of 50.

Catastrophic Forgetting (permuted MNIST)718

Hyerparameter selection. We select the hyperparameters for the three methods719

utilizing a grid search. The swept and the chosen parameters are displayed in Table S2.720

Learning curves. In Fig. S1 we display the test performance of previously learned721

tasks (columns) as a function of the training across multiple tasks. To reduce clutter, a722
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Model learning rate dropout regularization const
DGN 10−4, 10−3, 10−2, 10−1 – –
MLP 10−6, 10−5, 10−4, 10−3 Yes, No –
EWC 10−6, 10−5, 10−4, 10−3 Yes, No 102, 103, 104

Table S2: Parameters swept during grid search. The best parameters (shown in bold) are
the ones that maximize the average test accuracy over 20 random seeds.

subset of the tasks (1, 2, 4, and 8, out of 10) are shown. The top left plot (train and test723

on task 1) shows that DGNs learns the first task much faster than all other methods.724

The plots to the right of that show retention on task 1 while the network is sequentially725

trained on subsequent tasks. MLP performances drop drastically after learning a few726

new tasks, while DGN and EWC show little forgetting. This is a remarkable feat for727

DGNs, which have no access to task boundaries and no explicit memory of previously728

learned tasks. EWC, on the other hand, has both. If we look at the four diagonal729

plots, we see that DGN learns new tasks faster than all other methods, although the730

difference gets smaller as more tasks are learned.731

The final accuracies across the diagonal correspond to the left panel of Figure 3732

whereas the final accuracies across the first row correspond to the right panel.733
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Figure S1: Retention results for permuted MNIST. Models are trained sequentially on 8
tasks (rows) and evaluated on all previously encountered tasks (columns). For example, the
top row indicates performance on task 1 after being trained sequentially on tasks 1, 2, 4 and
8. Each model trains for one epoch per task. Error bars, indicated by the thickness of the
lines, denote 95% confidence levels over 20 random seeds.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.10.434756doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pseudocode734

Algorithm S1 DGN for quadratic loss

1: Input: network architecture: number of layers K ∈ N,
number of neurons in layer k {nk ∈ N},
number of branches per neuron i in layer k {Bk,i ∈ N}

2: Input: weights {wbk,ij ∈ R}
3: Input: gating parameters {vbk,ij ∈ R}, {θbk,i ∈ R}
4: Input: input x = (x1, ..., xn) ∈ Rn

5: Input: target r∗ ∈ R
6: Input: learning rate η ∈ (0, 1)
7: Input: update ∈ {true, false} (enables learning)
8: Output: Target prediction r̂ = rK,1 (output of neuron in last layer K)
9: r0,0 ← 1; n0 ← n; r0,i = xi for i ∈ {1, ..., n}

10: for k ∈ {1, . . . , K} do {over layers}
11: rk,0 ← 1 {bias}
12: for i ∈ {1, . . . , nk} do {over neurons}
13: for b ∈ {1, . . . , Bk,i} do {over branches}
14: gbk,i ← Θ(

∑nk−1

j=0 vbk,ijxj − θbk,i)
15: rk,i ←

∑Bk,i

b=1 g
b
k,i

∑nk−1

j=0 wbk,ijrk−1,j

16: if update then
17: for b ∈ {1, . . . , Bk,i} do {over branches}
18: if gbk,i > 0 then
19: for j ∈ {1, ..., nk−1} do {over neurons in previous layer}
20: wbk,ij ← wbk,ij − η (rk,i − r∗)wbk,ijrk−1,j

21: return rK,1

where Θ(·) is the Heaviside step function (Θ(z) = 1 for z > 0 and Θ(z) = 0 otherwise).735
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Algorithm S2 DGN for Bernoulli data

1: Input: network architecture: number of layers K ∈ N,
number of neurons in layer k {nk ∈ N},
number of branches per neuron i in layer k {Bk,i ∈ N}

2: Input: weights {wbk,ij ∈ R}
3: Input: gating parameters {vbk,ij ∈ R}, {θbk,i ∈ R}
4: Input: precision ε ∈ (0, 0.5)
5: Input: input x = (x1, ..., xn) ∈ Rn

6: Input: target r∗ ∈ {0, 1}
7: Input: learning rate η ∈ (0, 1)
8: Input: update ∈ {true, false} (enables learning)
9: Output: Target prediction r̂ = rK,1 (output of neuron in last layer K)

10: r0,0 ← σ(1); n0 ← n; r0,i = clip1−ε
ε (σ(xi)) for i ∈ {1, ..., n}

11: for k ∈ {1, . . . , K} do {over layers}
12: rk,0 ← σ(1) {bias}
13: for j ∈ {1, . . . , nk−1} do {over neurons in layer below}
14: hk−1,j ← σ−1(rk−1,j)
15: for i ∈ {1, . . . , nk} do {over neurons}
16: for b ∈ {1, . . . , Bk,i} do {over branches}
17: gbk,i ← Θ(

∑nk−1

j=0 vbk,ijxj − θbk,i)
18: hk,i ←

∑Bk,i

b=1 g
b
k,i

∑nk−1

j=0 wbk,ijhk−1,j

19: rk,i ← clip1−ε
ε σ(hk,i)

20: if update then
21: for b ∈ {1, . . . , Bk,i} do {over branches}
22: if |r∗ − σ(hk,i)| > ε then
23: for j ∈ {1, ..., nk−1} do {over neurons in previous layer}
24: wbk,ij ← wbk,ij − η(rk,i − r∗)hk−1,j

25: return rK,1

where clipba(·) clips values between a and b,

clipba(y) ≡


a y < a

y a < y < b .

b b ≤ y
(12)

σ(·) is the sigmoid function, σ(z) = ez/(1 + ez), and σ−1(·), its inverse, is given by736

σ−1(y) = log(y/(1− y)).737
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