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Conclusions
Dendritic gated networks (DGNs) are a novel learning algorithm that represent a biologically 
 plausible alternative to backpropagation
DGNs utilize local learning and input-dependent dendritic gating to yield efficent learning and
  resistance to catastrophic forgetting

The network architecture of DGNs exhibits features that resemble cerebellar circuitry, generating
  testable predictions that support their relevance to biological neural circuits

In vivo, molecular layer interneurons gate activity in dendritic branches of cerebellar Purkinje cells,
 validating a key prediction of DGNs in a canonical biological neural circuit

The generality of the DGN architecture should also allow this agorithm to be implemented in a
 range of networks throughout the nervous system, including the mammalian neocortex
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Introduction
The dominant view in neuroscience is that changes in synaptic weights underlie learning. It is not
clear, however, how the brain is able to determine which synapses should change and by how 
much. This uncertainty stands in sharp contrast to deep learning, where changes in weights are 
explicitly engineered to optimize performance1. However, the dominant algorithm used for learning 
in artificial networks, backpropagation, is not directly applicable to biological systems2. The bio-
logical implausibility of backpropagation has motiviated several proposals for architectures and 
learning rules that may be more relevant to the brain. These include feedback alignment, creative 
use of dendrites, multiplexing, and methods in which the feedback signal is fed directly to each 
layer rather than propagating backwards from the output layer back through the network, including 
Gated Linear Networks (GLNs)3.
Here, we introduce a powerful new biologically plausible alternative to backpropagation: the 
Dendritic Gated Network (DGN), a variant of the Gated Linear Network. DGNs combine dendritic 
‘gating’ - whereby interneurons target dendrites to shape neuronal responses - with local learning 
rules to yield provably robust performance. In particular, DGNs are more data efficient than other
artificial networks, and are highly resistant to forgetting.
The generality of the DGN architecture should allow this algorithm to be implemented in a range 
of networks in the brain. In particular, DGNs exhibit several structural and functional similarities to 
cerebellar circuits. To make this link explicit, we have performed two-photon calcium imaging of 
Purkinje cell dendrites and molecular layer interneurons in awake mice to test a key prediction of 
the DGN: that interneurons should gate activity in single dendritic branches of principal cells.

Cerebellar circuitry resembles DGNs3

PC

CbN

PC

CF

PF
MLI

IO

MF

GC

input
gates

hidden
activity

feedback

output

Cerebellar circuitry

target output

input (x)

Model architecture

Dendritic Gated Network architecture1
DGN overview

targetoutput

input (x) input (x)

erroroutput

Multilayer perceptron (MLP)
with backprop learning

Key features:
1. Goal of each ‘neuron’ in each layer is to predict ultimate target, so no error 
propagation is necessary
 → Learning occurs locally (more biologically plausible)
2. Signal propagation and learning is subject to input-dependent gating, so not
all weights are used and updated in all tasks
 → Learning new tasks does not cause forgetting of old tasks
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Testing predictions of DGN in vivo:
MLIs suppress activity locally in PC dendrites
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DGNs are resistant to catastrophic forgetting2
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DGNs exhibit similar levels of learning
and superior retention to MLPs

Crucial similarities between DGNs and cerebellar circuits:
1. Climbing fibers provide a well-defined feedback signal5
2. The input-output transformation of Purkinje cells (PCs) is linear6-7

3. Molecular layer interneurons (MLIs) could act as local gates on learning8-10
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