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SUMMARY

The cerebellum has long been proposed to play a role in cognitive function, although this has remained
controversial. This idea has received renewed support with the recent discovery that signals associated
with reward can be observed in the cerebellar circuitry, particularly in goal-directed learning tasks involving
an interplay between the cerebellar cortex, basal ganglia, and cerebral cortex. Remarkably, a wide range of
reward contingencies—including reward expectation, delivery, size, and omission—can be encoded by spe-
cific circuit elements in a manner that reflects the microzonal organization of the cerebellar cortex. The facts
that reward signals have been observed in both themossy fiber and climbing fiber input pathways to the cere-
bellar cortex and that their convergencemay trigger plasticity in Purkinje cells suggest that these interactions
may be crucial for the role of the cerebellar cortex in learned behavior. These findings strengthen the
emerging consensus that the cerebellum plays a pivotal role in shaping cognitive processing and suggest
that the cerebellum may combine both supervised learning and reinforcement learning to optimize goal-
directed action. We make specific predictions about how cerebellar circuits can work in concert with the
basal ganglia to guide different stages of learning.
INTRODUCTION

The canonical reward circuitry of the brain comprises multiple

brain regions, most notably midbrain dopaminergic neurons in

the ventral tegmental area (VTA) and substantia nigra pars com-

pacta (SNc)—where most neurons respond to delivery of

external rewards (Engelhard et al., 2019; Schultz, 1998). These

neurons influence goal-directed decision-making and behavior

through their projections to the striatum and frontal cortex (Björ-

klund and Dunnett, 2007; Cox and Witten, 2019; Ott and Nieder,

2019). The signals in dopaminergic neurons are thought to

encode subjective value that can be used to select and reinforce

actions (Schultz et al., 1997; Yokel and Wise, 1975). Activity in

these dopaminergic neurons is generally considered in the

context of temporal difference learning (Sutton, 1988) and con-

sists of responses that encode reward prediction, delivery, and

omission, underpinning the consensus that these reward signals

are the main locus of reinforcement learning in the brain (Bayer

and Glimcher, 2005; Doya, 2000; Schultz et al., 1997). More

recent experiments using tools from experimental economics

have led to suggestions that the dopaminergic reward signal en-

codes economic utility (Schultz et al., 2017).

Recently, several studies have demonstrated that reward de-

livery during both operant and associative behavioral tasks

drives widespread activation in cerebellar neurons in a manner

that exhibits hallmarks of reward-related activity in the dopami-

nergic circuitry (Heffley and Hull, 2019; Heffley et al., 2018; Kos-

tadinov et al., 2019; Larry et al., 2019; Wagner et al., 2017), build-
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ing on earlier work suggesting that the cerebellum is involved in

reward-related behaviors (Berns et al., 2001; Ramnani et al.,

2004; Tanaka et al., 2004; Thoma et al., 2008). These physiolog-

ical findings have been complemented by recently discovered

anatomical pathways showing that the cerebellum is poised to

influence and be influenced by reward circuitry through its recip-

rocal connectivity with the VTA and SNc (Carta et al., 2019; Fal-

lon et al., 1984; Pisano et al., 2021; Watabe-Uchida et al., 2012)

as well as the striatum (Bostan and Strick, 2018; Chen et al.,

2014; Hoshi et al., 2005; Ichinohe et al., 2000) and neocortex

(Chabrol et al., 2019; Gao et al., 2018; Kelly and Strick, 2003; Pi-

sano et al., 2021; Wagner et al., 2019; Wagner and Luo, 2020). A

key first step for understanding the interactions between these

systems is to examine where in the cerebellar circuit specific

reward contingencies are represented and to define the similar-

ities and differences in encoding of reward-related information

across these different brain regions.
Overview of the cerebellar circuitry
The cerebellum is innervated by two distinct sources of glutama-

tergic input: mossy fiber inputs arising from the spinal cord,

brainstem, and pontine nuclei and climbing fiber inputs origi-

nating in the inferior olivary nucleus (Figure 1A). These input

pathways converge in the cerebellar cortex within Purkinje cells

and have traditionally been thought to carry complementary in-

formation streams (Albus, 1971; Marr, 1969). Mossy fiber inputs,

which are routed to Purkinje cells via the parallel fiber axons of
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Figure 1. Reward signals in specific
locations in cerebellar circuits
(A) Schematic of the canonical cerebellar micro-
circuit. Excitatory input arrives via two sources: the
mossy fiber pathway from nuclei in the pons,
brainstem, and spinal cord and via the climbing
fiber pathway originating in the inferior olivary nu-
cleus. Mossy fiber inputs activate granule cells in
the cerebellar cortex, which then send parallel fi-
ber axons that excite Purkinje cells, which also
receive excitatory input from a single climbing fi-
ber. Purkinje cells form the sole output of the
cerebellar cortex, sending inhibitory projections to
the cerebellar nuclei, which also receive excitatory
inputs from collaterals of both mossy fibers and
climbing fibers. Inhibitory interneurons are omitted
from this schematic for simplicity.
(B) Reward signals in cerebellar granule cells re-
corded using two-photon calcium imaging asmice
executed a forelimb operant task for water reward.
Trial-averaged fluorescence activity of three
example granule cells is aligned to reward delivery
time on rewarded trials or trials on which reward
was unexpectedly omitted. Individual granule cells
exhibit delivery, omission, and anticipation signals
(modified from Wagner et al., 2017).
(C) Reward signals in climbing fiber input to Pur-
kinje cells measured using two-photon calcium
imaging of Purkinje cell (PC) dendrites as mice
performed a visuomotor integration task for oper-
ate rewards and received interleaved random and
tone-cued rewards. Trial-averaged dendritic event
rates, which faithfully report climbing fiber input
and complex spiking, in response to random, op-
erant, and cued rewards in PCs classified as
reward-activated and reward-suppressed based
on their response to operant reward delivery. Pre-
dictability exerts a suppressive effect on reward
responses (modified from Kostadinov et al., 2019).
(D) Reward signals in Purkinje cell simple spikes in
monkeys performing a visuomotor association
task. Neurons could be classified based on
whether their activity was higher after incorrect
outcomes (wrong-reporting Purkinje cells; wP-
cells) or after correct outcomes (correct-reporting
Purkinje cells; cP-cells) during learning of novel
visuomotor associations. Differences in firing rate
occurred during ‘‘delta epochs’’ (denoted by red
dashes) and were not present at the end of a
learning block (trained), instead emerging tran-
siently during the learning of new associations
(modified from (Sendhilnathan et al., 2020).
(E) Reward signals in cerebellar nuclear neurons in
mice running down a virtual corridor to a reward
location. Cerebellar nuclear neurons (CbNs) ex-
hibited three types of responses: type 1 cells
increased their firing as animals approached the
reward location and decreased their firing upon
reward delivery, type 2 cells exhibited increased
firing before and after reward delivery, and type 3
cells were activated only after reward delivery
(modified from Chabrol et al., 2019).
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granule cells, are thought to carry contextual sensory, motor,

and internal state signals that form a temporal basis for learning

in Purkinje cells. Meanwhile, climbing fibers, which synapse

directly onto Purkinje cells, are thought to carry instructive sig-
nals that informPurkinje cells about which

mossy fiber inputs are important (and

which are not) (Albus, 1971; Marr, 1969).
Coincident activation of climbing fiber and parallel fiber inputs

triggers long-term depression of parallel fiber synapses (Ito

and Kano, 1982). Moreover, plasticity at this synapse is timing-

dependent (Safo and Regehr, 2008; Suvrathan et al., 2016;
Neuron 110, April 20, 2022 1291
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Wang et al., 2000) and bidirectional, since parallel fiber synapses

that are active independent of climbing fiber inputs undergo

long-term potentiation (Boyden and Raymond, 2003; Coesmans

et al., 2004; Gao et al., 2012; Jörntell and Hansel, 2006; Salin

et al., 1996). Climbing fiber inputs trigger complex spikes in Pur-

kinje cells and are traditionally thought to convey predictive

timing and sensorimotor error signals that improve motor perfor-

mance (Kawato et al., 1987; Medina, 2011; Wolpert et al., 1998).

These inputs organize the cerebellum intomicrozones, groups of

neighboring Purkinje cells about 100–200 mmwide. Thesemicro-

zones form functional and anatomical modules that coordinate

activity, drive plasticity, and, ultimately, control cerebellar output

via the cerebellar nuclei (Apps and Garwicz, 2005; Cerminara

et al., 2015; De Zeeuw, 2021; Herzfeld et al., 2015; Michikawa

et al., 2021; Person and Raman, 2011). This is due to the unique

anatomical organization of climbing fiber projections and func-

tional properties of inferior olive neurons, the sole origin of the

climbing fibers (Apps and Garwicz, 2005; Sugihara and Shinoda,

2004). Olivary neurons form gap junction-coupled networks that

exhibit coherent subthreshold oscillations (Llinas et al., 1974;

Mathy et al., 2009; Van Der Giessen et al., 2008). Coupled groups

of olivary neurons, which innervate neighboring Purkinje cells,

fire action potentials synchronously, in turn triggering synchro-

nous complex spikes in their target Purkinje cells. Thus, groups

of Purkinje cells organized into microzones experience climbing

fiber plasticity coherently and coordinate cerebellar output and

learning via synchronous output to neurons of the cerebellar

nuclei (Tsutsumi et al., 2020; Van Der Giessen et al., 2008).

Because a given external input activates some groups of climb-

ing fibers while suppressing others, different microzones may

preferentially experience long-term depression (i.e., be down-

bound) or potentiation (i.e., be upbound) during learning in a

particular behavioral context, allowing for flexible and synergistic

learning (De Zeeuw, 2021).

Thus, the cerebellar cortex features one of themost beautifully

ordered functional architectures of any circuit in the brain, which

has now been well established and is intensively studied for de-

cades (Eccles et al., 1967; De Zeeuw et al., 2021)—inspiring

many theories of learning based primarily on performance error

signals conveyed by the climbing fiber pathway. It was therefore

quite unexpected and disruptive to suddenly find reward signals

throughout the cerebellum, delivered to specific elements of the

cerebellar circuitry by activity in the mossy fibers and climbing fi-

bers (Heffley and Hull, 2019; Heffley et al., 2018; Kostadinov

et al., 2019; Larry et al., 2019; Wagner et al., 2017, 2019). Next,

we will describe the evidence for reward signals in these distinct

pathways.
Reward signals in the mossy fiber-granule cell pathway
Cerebellar granule cells are the most numerous neuronal cell

type, comprising approximately half of all neurons in the brain.

However, they are also very small and exceptionally difficult to

record from using electrophysiological approaches, which has,

until recently, prohibited studies of their function in vivo during

behavior (but see Powell et al., 2015). To overcome this hurdle,

several recent studies have used two-photon imaging of calcium

signals in granule cells (Giovannucci et al., 2017; Wagner et al.,
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2017, 2019), which likely reflect action potential bursts, to mea-

sure population activity in granule cells in awake behaving mice.

In a landmark study, Wagner and colleagues used this

approach to observe prominent reward-related signals in

granule cell populations across cerebellar lobules VI, simplex,

and Crus I during both operant and classical conditioning

behavior (Wagner et al., 2017). They reported that subsets of

granule cells (1) are activated by reward delivery, (2) encode

reward predictively (active between motor action and reward

and sensory cue and reward), and (3) can signal a lack of ex-

pected reward (Figure 1B). By tracking populations across

training, they also showed that granule cells undergo important

learning-dependent changes. Although movement-related sig-

nals remained relatively constant across learning, reward-pre-

diction and reward-omission signals were both substantially

enhanced over the course of learning. Thus, the mossy fiber-

granule cell pathway can convey both sensorimotor context as

well as reward-related signals to Purkinje cells during complex

behavior. More recently, the same group used dual two-photon

imaging of neocortical output neurons and granule cells to study

the interplay betweenmovement and reward-related information

in the corticocerebellar loop. Interestingly, they showed that

reward-related signals are conditional—there are granule cells

that are specifically tuned to combinations of actions (left and

right arm movements) and reward (Wagner et al., 2019). Thus,

granule cells may be capable of parcellating behavior and bind-

ing specific sensorimotor features to upcoming reward,

providing an even richer set of parameters for Purkinje cell micro-

zones to learn. These learned pattern combinations could then

be routed out to various extracerebellar targets via specificmod-

ules, binding specific motor synergies to rewarding outcomes

(De Zeeuw, 2021; Heiney et al., 2021).

Reward signals in the climbing fiber pathway
Several recent studies have probed the organization and func-

tional properties of predictive and feedback climbing fiber sig-

nals, showing that they transcend pure sensorimotor associa-

tions and can signal learned predictions about reward. Two

groups used two-photon imaging of calcium signals in Purkinje

cell dendrites, which reflect complex spikes driven by climbing

fiber input (Gaffield et al., 2019; Kitamura and Hausser, 2011;

Tsutsumi et al., 2015), to reveal how these inputs convey and

evaluate the outcome of predictions about upcoming rewards

(Heffley et al., 2018; Kostadinov et al., 2019). Using an operant

forelimb task in which mice were trained to release a lever in

response to a visual cue to receive reward, Heffley and col-

leagues showed that climbing fiber inputs in lobule simplex are

activated more strongly by correct (rewarded) lever releases in

response to the visual cue than incorrect or spontaneous lever

releases (Heffley et al., 2018). In a complementary study, Kosta-

dinov and colleagues used a visually guided sensorimotor inte-

gration task in whichmice obtain operant rewards for performing

accurate steering wheel movements that translate a virtual ob-

ject to a target location to study the diversity of climbing fiber sig-

nals conveyed to distinct microzones in lobule simplex (Kostadi-

nov et al., 2019) (Figure 1C). By delaying reward delivery relative

to the animals’ movements, this study was able to distinguish

signals related to sensorimotor modulation from predictive and
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Figure 2. Anatomical connections between cerebellar circuits and reward-related areas
(A) Summary of the major brain-wide anatomical connections that could be engaged in cerebellar reward signaling, most notably the reciprocal interactions
between the cerebellum and basal ganglia circuits, and the cerebellocortico-thalamic loops (see Bostan and Strick, 2018). Recently identified connections are
highlighted.
(B) Example image of cerebellar Purkinje cells sorted by microzone identity based on recording of spontaneous activity. These microzones comprise the
computational units of cerebellar cortical computation (modified from Kostadinov et al., 2019).
(C) Schematic of cerebellar modules that form the full computational subunits of the cerebellum and may engage in distinct loops with various reward-related
structures. Sensorimotor and reward context are conveyed to multiple modules via the mossy fiber pathway, and reward-related teaching signals are conveyed
to individual microzones by reward-activated and reward-suppressed climbing fiber inputs. Ultimately, predictive control of behavior is achieved through
combinatorial activation and suppression of action-specific output from the cerebellar nuclei.
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reactive reward-related activity. Importantly, this study found

that reward signals are organized into crisply defined micro-

zones of Purkinje cells (Figure 2B) that could signal reward deliv-

ery bidirectionally: some microzones were activated, whereas

others were suppressed by reward. Furthermore, reward-sup-

pressed microzones were also more likely to signal expected re-

wards predictively in the delay between the end of the animals’

movement and the upcoming reward. The microzonal structure

of reward signaling suggested an organizing principle for how

the cerebellar circuitry mediates reward signaling: specific ac-

tion contexts that are predictive of rewards, carried by themossy

fiber-granule cell pathway, may be learned flexibly through acti-

vation and suppression of Purkinje cell microzones and trans-

mitted to the rest of the brain through modular action map out-

puts via the cerebellar nuclei (Figure 2C).

Both studies also probed how violations of animals’ reward-

related expectations were represented by climbing fiber inputs:
delivering unexpected rewards evoked climbing fiber responses

in many Purkinje cells, and this reward-related activation was

significantly stronger than that present during operant behavior

(when the reward was predictable). Conversely, omitting ex-

pected reward on operant task trials evoked secondary error-

like responses when animals realized that an expected reward

was not present (Heffley et al., 2018; Kostadinov et al., 2019).

Thus, the same climbing fiber populations can signal both the

expectation of an upcoming reward and a violation of a learned,

reward-related expectation.

Several groups have also documented reward-related climb-

ing fiber signals by measuring complex spiking in Purkinje cells

using electrophysiology. Using a smooth pursuit tracking task

in monkeys in which the visual cue predicted reward size, Larry

et al. showed that climbing fibers in the cerebellar flocculus can

signal upcoming reward size (Larry et al., 2019). Although these

authors did not observe complex spike modulation at the time of
Neuron 110, April 20, 2022 1293
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reward delivery, their recordings were performed in trained ani-

mals where rewards would be expected and climbing fiber sig-

nals may therefore be suppressed (Heffley and Hull, 2019; Kos-

tadinov et al., 2019), possibly through direct inhibitory feedback

from the cerebellum to the inferior olive (Kim et al., 2020). Using a

visuomotor association learning task in monkeys and recording

from Purkinje cells in Crus I and II, Sendhilnathan et al. showed

that when reward-related task timing is predictable, climbing fi-

ber inputs signal these events predictively (Sendhilnathan et al.,

2021). Finally, Chabrol et al. also recorded Purkinje cell activity in

Crus I in mice running on a treadmill to a reward location in a vir-

tual track and found that reward delivery triggered robust ‘‘fat

spikes,’’ which likely reflect dendritic events in Purkinje cells

associated with climbing fiber input (Chabrol et al., 2019; Davie

et al., 2008). An important next step toward elucidating how

these reward-related climbing fiber inputs contribute to behavior

is to understand how these signals are modified over the course

of learning.

Climbing fiber reward signals may be used for learning
By interleaving tone-cued rewards into their behavioral paradigm

while imaging across learning, Kostadinov et al. were able to

demonstrate that predictive reward signals in lobule simplex

emerge over the course of training and that responses to cued,

anticipated (i.e., fully predictable) rewards are almost completely

suppressed (Kostadinov et al., 2019). Furthermore, in a subse-

quent study that used a visual Pavlovian conditioning paradigm

instead of their previous operant motor task and also recorded in

both naive and trained animals, Heffley et al. demonstrated that

climbing fiber inputs to Purkinje cells in multiple lobules in the

cerebellar hemispheres can encode reward-predictive sensory

cues (Heffley and Hull, 2019). Climbing fiber inputs learned to

convey these reward-predictive cues in addition to other sensory

responses that were already present in naive animals. Specif-

ically, in lobules simplex and Crus II, where climbing fibers did

not exhibit visual responses in naive animals, responses to the

reward-predicting visual cue emerged with learning. However,

in Crus I, where climbing fibers already exhibited visual sensory

responses in naive animals, the learned reward-predictive

response was present in addition to the baseline visual

response.

Thus, climbing fiber inputs, which are classically viewed as the

cerebellum’s teachers, are themselves subject to reward-related

learning. Predictive reward signals emerge as animals learn

which sensory and motor task parameters lead to reward, and

reward responses are suppressed when rewards are predict-

able. These are both hallmark features of a temporal difference

reinforcement learning signal (Sutton, 1988) and are similar to

reward-related activity in midbrain dopaminergic neurons

(Schultz, 1998; Schultz et al., 1997). Interestingly, the acquisition

of such predictive signals may not be limited only to appetitive

stimuli; cerebellar responses during delayed eye-blink condition-

ing also exhibit signatures of temporal difference learning

including predictive activation and a signed prediction error (Gio-

vannucci et al., 2017; Ohmae andMedina, 2015; ten Brinke et al.,

2015; Ten Brinke et al., 2017). Reward-related feedback climb-

ing fiber signals are, on the other hand, dissimilar from dopami-

nergic neurons (and climbing fiber signals during eye-blink con-
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ditioning). These signals universally report reward omission

through activation and are therefore more consistent with an un-

signed prediction error signal. If these reward prediction error

signals reflect activity in the dopaminergic circuitry, they must

be rectified on their way to reaching the inferior olive or they

are instead driven by other reward-related circuits, such as the

locus coeruleus (Rouhani and Niv, 2021; Sara, 2009). Alterna-

tively, these cerebellar reward signals may represent the viola-

tion of a sensory expectation of about the physical presence of

the reward, which are detected without the aid of specific reward

circuitry. This may explain why reward omission signals are pre-

sent in some cerebellar modules but not others (De Zeeuw, 2021;

Kostadinov et al., 2019).

Cerebellar output mediated by the Purkinje cells ultimately re-

lies on the interplay of information from the mossy fiber-granule

cell and climbing fiber pathways. Thus, it is crucial to understand

how these input streams are integrated in Purkinje cells. In the

following section, we discuss several recent studies that have

used electrophysiological methods, which provide sufficient

temporal resolution to measure these signals simultaneously,

to define the relationship between reward-related simple spikes

(modulated by the mossy fiber-granule cell pathway) and com-

plex spikes (driven by climbing fiber inputs).

Howdo reward signals in different pathways converge in
Purkinje cells?
Mossy fiber and climbing fiber inputs conveying functionally

similar information converge in individual microzones (Apps

and Garwicz, 2005; Brown and Bower, 2001). Given that reward

signals have been observed in bothmossy fiber (granule cell) and

climbing fiber pathways, it is therefore likely that these two

streams of reward signaling will converge in individual Purkinje

cells, via interactions between parallel fiber and climbing fiber in-

puts. Crucially, coincident activation of these inputs has been

shown to lead to long-term depression at the parallel fiber syn-

apse, whereas activation of parallel fibers by themselves leads

to long-term potentiation (Boyden and Raymond, 2003; Coes-

mans et al., 2004; Gao et al., 2012; Ito and Kano, 1982; Jörntell

and Hansel, 2006; Salin et al., 1996). These forms of plasticity

have long been postulated to be the locus of memory storage

during motor learning (Albus, 1971; Marr, 1969). This has been

supported by a large body of work showing that climbing fiber in-

puts to Purkinje cells during learning exert bidirectional modula-

tion of coincident parallel fiber inputs (Gilbert and Thach, 1977;

Herzfeld et al., 2018; Medina and Lisberger, 2008), leading to

reciprocal task coding by complex and simple spikes within indi-

vidual neurons (Badura et al., 2013; Gilbert and Thach, 1977;

Stone and Lisberger, 1990). A key to placing cerebellar reward

signals within the context of known cerebellar functions is, there-

fore, to define how complex and simple spikes represent reward

in individual Purkinje neurons. Several recent studies have used

electrophysiological methods to compare reward-related activ-

ity in complex and simple spikes in the same cells.

To this end, Larry and colleagues recorded from the floccular

complex of monkeys performing a visual pursuit that contained a

cue period during which reward size was signaled (by cue color)

and followed by a smooth pursuit period allowed them to directly

assess the relationship between reward-related and movement-
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related simple and complex spike firing in the same Purkinje

cells. Although simple and complex spike signals were anticorre-

lated during the pursuit period of each trial, these signals were

not consistently reciprocal during the reward cue period (Larry

et al., 2019). The simple spike rates of Purkinje cells during the

pursuit phase did vary slightly in trials with different cues (and

therefore different reward sizes), but motor kinematics were suf-

ficient to explain these differences (Lixenberg et al., 2020). Thus,

in this behavioral paradigm, complex spike but not simple spike

activity may play a central role in encoding reward value in

trained animals.

The question of how these two Purkinje cell firing modes

encode information during learning has been addressed by a

recent set of studies by Sendhilnathan and colleagues. Using a

visuomotor association learning task in monkeys and recording

lobules Crus I and II, these authors demonstrated that the simple

spike rates of Purkinje cells encode a reinforcement error signal

during the learning of new visuomotor associations, reporting the

outcome of the animal’s most recent decision in short periods

that they termed ‘‘delta epochs’’ (Figure 1D). Although each neu-

ron’s selectivity for previously correct or incorrect trials differed

only in these short epochs, Purkinje cells as a population tiled

the whole duration from one decision to the next. Thus, this pop-

ulation activity maintained a working memory of the last trial’s

outcome that could be used to guide the subsequent decision.

This delta epoch encoding was transient (the differences in firing

disappeared after the new visuomotor associations were

learned) and did not depend on the particular movement kine-

matics or sensory cue that was presented. Surprisingly, the

timing of simple spike delta epochs in individual Purkinje cells

was not systematically related to the timing of complex spike

firing in these neurons, which often occurred in response to

reward-predictive cues and actions (Sendhilnathan et al., 2020).

These studies suggest that predictive complex spikes may

engage the cerebellum differently than canonical error-related

feedback complex spikes. An intriguing possibility is that these

predictive climbing fiber inputs may serve as a ‘‘perturbation’’

signal that opens up the cerebellar circuitry for further plasticity

based on upcoming sensory or motor events, as proposed in a

recent studybyBouvier andcolleagues (Bouvier et al., 2018). It re-

mains unclear whether these ‘‘perturbation’’ complex spikes

would exhibit any specific biophysical signature that allows

them to exert different actions, but this is an open possibility

when considering the exquisite calcium sensitivity of plasticity

at the parallel fiber to Purkinje cell synapses (Coesmans et al.,

2004; Jörntell and Hansel, 2006; Rowan et al., 2018; Wang

et al., 2000) as well as the diversity of climbing fiber-mediated

dendritic calcium signals and complex spike durations observed

in Purkinje cells under a variety of task conditions (Mathy et al.,

2009; Najafi et al., 2014; Ten Brinke et al., 2019; Yang and Lis-

berger, 2014). These predictive climbing fiber inputs may not

only serve a function in the cerebellum itself. Theymay also serve

as a precise timing signal in distally connected brain regions,

including the basal ganglia, that important behavioral events are

about to occur (Howe and Dombeck, 2016; Nashef et al., 2018;

Simpson et al., 1996; Tsutsumi et al., 2020). More broadly, this

priming signal for upcoming salient events would be consistent

with the Pearce-Hall model of learning (Pearce and Hall, 1980).
Where do cerebellar reward signals come from, and
where do they go?
Understanding the functional significance of cerebellar reward

signals crucially depends on knowledge of their origin. Are the

cerebellar reward pathways simply sent copies of reward signals

processed by the classical midbrain reward centers in the VTA/

SNc, or are there distinct reward signals computed elsewhere

that govern cerebellar reward signaling? These two alternatives

are not mutually exclusive, and the extensive reciprocal inter-

connections between the cerebellum and other brain structures

that have been discovered over the past 15 years (Caligiore et al.,

2017; Strick et al., 2009) suggest that there may be numerous

convergent and parallel systems that influence cerebellar reward

signals (Figure 2A).

Afferent inputs to the inferior olive from the forebrain arise from

a variety of sources including direct projections from neocortex

as well as signals relayed via the mesodiencephalic junction

(De Zeeuw et al., 1998; Garden et al., 2017; Ten Brinke et al.,

2019; Wang et al., 2021). A specific connection between the

VTA and the inferior olive has also been suggested based on

anterograde tracing studies (Fallon et al., 1984), which could pro-

vide the basis for reward signals mediated by the climbing fiber

pathway. For the mossy fiber-granule cell pathway, there is

currently no evidence for a direct projection frommidbrain dopa-

minergic neurons to the circuits that form themossy fibers. How-

ever, the subthalamic nucleus, a major source of excitation

within in the basal ganglia, projects directly to the pontine nuclei

(Bostan et al., 2010), providing a pathway for basal ganglia cir-

cuits to deliver reward-related information to the cerebellar cor-

tex via the mossy fibers. Furthermore, most neocortical regions

project disynaptically to the cerebellum via the basilar pons

(Huang et al., 2013; Wagner et al., 2019). In particular, the pre-

frontal cortex (PFC), a region known to be engaged in control

of goal-directed behavior via dopaminergic reciprocal pathways

with the striatum, features strong reciprocal interconnectivity

with the cerebellum (Middleton and Strick, 2001).

Cerebellar output via the deep cerebellar nuclei has also been

shown to engage with reward circuits throughout the brain. Pop-

ulations of neurons in the cerebellar nuclei can exhibit both

reward-predictive ramping as well as directly encoding reward

delivery (Chabrol et al., 2019) (Figure 1E), and these neurons

have been shown to send a monosynaptic excitatory projection

directly to dopaminergic neurons in the VTA (Carta et al., 2019;

Pisano et al., 2021; Watabe-Uchida et al., 2012). Importantly,

activation of this pathway can modulate reward-driven behavior

and is engaged in cerebellar-dependent social interaction tasks

(Carta et al., 2019), providing a causal link between cerebellar

output and reward signaling. The deep cerebellar nuclei also

engage with other elements of the basal ganglia: the dentate nu-

cleus (DN) has a disynaptic connection with an input stage of

basal ganglia processing, the striatum (Hoshi et al., 2005; Ichi-

nohe et al., 2000). Cerebellar output also influences cortical

reward circuits via the dense reciprocal connectivity with the

prefrontal cortex (Kelly and Strick, 2003; Middleton and Strick,

1994, 2001), via thalamic relays. These long-range connections

have been shown to be critical for the maintenance of prepara-

tory signals in premotor regions of neocortex (Chabrol et al.,

2019; Gao et al., 2018; Li and Mrsic-Flogel, 2020) and have the
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ability to drive heterosynaptic plasticity of corticostriatal synap-

ses in the basal ganglia (Chen et al., 2014).

In summary, there is evidence both for direct connections be-

tween cerebellar circuits and midbrain dopaminergic neurons

(Carta et al., 2019; Fallon et al., 1984; Watabe-Uchida et al.,

2012), the canonical reward-processing neurons of the brain,

as well as indirect connections via the basal ganglia and cortical

reward-processing circuits. Importantly, the connections with

the basal ganglia and with the neocortex are via multiple recip-

rocal nested loops, providing multiple opportunities for mutual

interaction. These pathways therefore provide opportunities for

the reward system to directly influence cerebellar function, as

well as for higher-level processing to manipulate reward signals

before transmission to the cerebellum. Furthermore, cerebellar

output can itself influence dopaminergic neuron activity (Carta

et al., 2019), which in turn will affect basal ganglia and cortical

reward processing. Finally, it is possible that some aspects of

reward-related activity in the cerebellum exist as reverberating

activity within the cerebellum itself (Gao et al., 2016; Khilkevich

et al., 2018; Kim et al., 1998). Further anatomical and physiolog-

ical experiments, in particular using optogenetic and chemoge-

netic activation and silencing approaches, are needed to identify

the direct and indirect anatomical pathways that contribute

causally to cerebellar reward signals.

Interpreting cerebellar reward signals in the context of
models of learning
It has long been suggested that the basal ganglia and cerebellum

play complementary roles in learning and are specialized for

different types of learning. Specifically, it has been proposed

that basal ganglia are responsible for reinforcement learning,

and the cerebellum is responsible for supervised learning

(Doya, 2000). In this classical framework, dopaminergic reward

prediction errors teach the striatum which actions will maximize

reward and thus should be selected, whereas the sensory pre-

diction error mediated by the climbing fiber system teaches

the cerebellar cortex how to modify motor commands in order

to execute the action correctly, thus implementing forward and

inverse models for motor control (Kawato et al., 1987; Wolpert

and Miall, 1996; Wolpert et al., 1998). The strongest evidence

for this view of cerebellar function comes from interrogation of

the oculomotor system, where studies of visual reflex, smooth

pursuit, and saccade adaptation have collectively extracted a

common set of principles (De Zeeuw, 2021; De Zeeuw et al.,

2021; Lisberger, 2009). The recent findings that reward-based

learning can drive and modify signals in the cerebellum repre-

sents a major departure from the classical function attributed

to this brain region (Medina, 2019). Specifically, the reward sig-

nals observed in cerebellar cortex are similar to reward predic-

tion error signals in the dopaminergic neurons in the VTA and

SNc (Schultz et al., 1997).

However, the cerebellar reward signals do not represent an

identical copy of dopaminergic reward signals broadcast

throughout the brain. Table 1 compares reward contingencies

in the dopaminergic system with the reward signals recently

observed in different elements of the circuitry of the cerebellar

cortex. Although there is significant overlap between reward

contingencies in the dopaminergic system and cerebellar reward
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signals, there are also important differences. For example,

although the majority of midbrain dopaminergic neurons signal

unexpected rewards with an increase in firing (Mirenowicz and

Schultz, 1994; Schultz, 1998; Schultz et al., 1997; but see Mene-

gas et al., 2018), climbing fiber inputs to some microzones are

activated by reward, whereas inputs to other microzones are

suppressed by reward (Kostadinov et al., 2019). Moreover,

dopaminergic neurons signal negative reward predictions with

a decrease in their firing—i.e., a signed reward-prediction er-

ror—whereas climbing fibers signal violations in reward expecta-

tion with an increase in firing, regardless of whether the quality of

reward was better or worse than expected—i.e., an unsigned

prediction error, a feature more similar to reward signals

observed in various other brain regions including the locus co-

eruleus (Rouhani and Niv, 2021) and anterior cingulate cortex

(Hayden et al., 2011). Thus, further work is required to examine

exactly how close the parallels are between reward signals in

the dopaminergic system and the cerebellum, ideally by

recording from both circuits in the same behavioral tasks. Finally,

given that even in the dopaminergic reward system there exists

diversity in reward signals depending on projection target (Cox

andWitten, 2019; Menegas et al., 2018; Parker et al., 2016; Tsut-

sui-Kimura et al., 2020) and that dopaminergic neurons can also

encode sensory events and movement (Engelhard et al., 2019),

future work will require a careful dissection of how sensory, mo-

tor, and reward contingencies are represented at each stage in

the cerebellar circuit, as well as across different cerebellar

lobules.

Taken together, these recent findings suggest that the cere-

bellum utilizes both performance-based (supervised) learning

strategies—implemented via the climbing fiber pathway (Medina

and Lisberger, 2008; Popa et al., 2016; Raymond and Lisberger,

1998)—as well as reward-based (reinforcement) learning strate-

gies that are classically implemented by the dopaminergic sys-

tem in the basal ganglia (Schultz, 1998). These findings challenge

the traditional view that the cerebellum and basal ganglia use

distinct learning strategies to guide learning (Doya, 2000) and rai-

ses several key questions. First, why does the cerebellum use

two complementary strategies for learning and how are these

strategies differentially engaged across behavioral tasks? Sec-

ond, why are there parallel pathways for reinforcement learning

in the basal ganglia and cerebellum?

Recent studies in humans performing reach adaptation tasks

suggest an answer to both questions, namely that there is a dy-

namic interplay between reward-based learning and perfor-

mance-based learning. Reach adaptation can be driven by

both reward-based feedback as well as sensory error-based

feedback (Izawa and Shadmehr, 2011; Therrien et al., 2016),

but learning through these different mechanisms exhibits distinct

features. Subjects with cerebellar damage trained on a reaching

adaptation task exhibit an inability to retain the learned motor

behavior when they had acquired this new skill through an er-

ror-based learning regime. However, these same subjects

show substantial retention (savings) of the learned movement

when they learned it under a reinforcement learning regime

(Therrien et al., 2016). Conversely, control subjects trained under

conditions of added sensory noise (meant to mimic the effects of

cerebellar damage) exhibit slower learning, even under a



Table 1. Comparison of reward contingencies in midbrain dopaminergic neurons and cerebellar circuit elements

Reward delivery Reward omission Reward anticipation Reward size

Midbrain

dopaminergic neurons

d Strong when unex-

pected

d Weak when ex-

pected (Mireno-

wicz and

Schultz, 1994)

d Signed prediction

error (i.e., omission

and delivery re-

sponses have

opposite signs)

(Schultz

et al., 1997)

d Transient re-

sponses to

reward-predictive

cues (Ljungberg

et al., 1992;

Schultz

et al., 1997)

d Continuous

response as

reward predictions

are updated (Howe

et al., 2013; Kim

et al., 2020)

d Strong responses

to cues predicting

larger rewards (To-

bler and

Schultz, 2005)

d Monotonic in-

crease with

increased reward

size (Eshel et al.,

2015; Tobler

et al., 2005)

Cerebellar

granule cells

d Subset of neurons

across multiple

lobules activated

by reward delivery

(Wagner et al.,

2017, 2019; Shus-

ter et al., 2021)

d Delivery response

modulated by

expectation (Wag-

ner et al., 2017)

d Only evidence for

activation by

reward omission

(Wagner

et al., 2017)

d Some evidence for

signed reward pre-

diction error (Wag-

ner et al., 2017)

d Little to no evi-

dence for transient

activation by

reward-predic-

tive cues

d Strong evidence

for continuous

(ramping)

response during

anticipation (Wag-

ner et al., 2017)

d Unknown

Purkinje cell

complex spikes

d Bidirectional acti-

vation and sup-

pression depend-

ing on microzone

d Strong modulation

when unexpected,

weak modulation

when expected

(Heffley et al.,

2018; Heffley and

Hull, 2019; Kosta-

dinov et al., 2019)

d Unsigned predic-

tion error—omis-

sion responses al-

ways result in

activation (Heffley

et al., 2018; Kosta-

dinov et al., 2019)

d Transient response

to reward-predic-

tive cues (Heffley

and Hull, 2019;

Kostadinov

et al., 2019)

d Continuous

response as

reward predictions

are updated (Kos-

tadinov et al., 2019)

d Stronger response

to cues predicting

larger rewards

(Larry et al., 2019)

d Responses to

different uncued

reward sizes is

unknown

Purkinje cell

simple spikes

d Mixture of activa-

tion and suppres-

sion (Chabrol

et al., 2019)

d Influence of

expectation on de-

livery is unknown

d Unknown d Mixture of ramping

activation and

suppression, with

suppression more

common (Chabrol

et al., 2019)

d History-dependent

encoding of reward

state of previous

task trial (Sendhil-

nathan et al., 2021)

d Small increase in

activation to large

reward-predictive

cues that is ex-

plained by altered

movements (Lix-

enberg et al., 2020)

d Responses to

different uncued

reward sizes is

unknown

Cerebellar

nuclear neurons

d Mixture of activa-

tion and suppres-

sion (Gao et al.,

2018; Chabrol

et al., 2019)

d Influence of

expectation on de-

livery is unknown

d Unknown d Predominately

ramping activation

(Chabrol

et al., 2019)

d Unknown

Summary of available data comparing how different elements of the cerebellar circuit represent rewards, and how these signals compare with those in

midbrain dopaminergic neurons. We also highlight where the corresponding data is currently unknown in cerebellar circuits. Key references are given

(for further references see main text).
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Figure 3. Proposed cerebellum-basal
ganglia interactions during different stages
of learning
A speculative framework for exploring how per-
formance-based and reward-based mechanisms
implemented by the basal ganglia and cerebellum
may collaborate to drive learning.
(A) Left: As novice subjects learn to perform a new
task (e.g., reach-learning tasks toward a target
reward location, in which movement and sensory
feedback can be decoupled) where correct out-
comes are not known a priori, variable actions
(reach trajectories, curved lines) are usually not
rewarded (dark blue) but occasionally result in
rewarded outcomes (light blue). Right: During this
early stage of learning, signals from the basal
ganglia (top traces) may teach the cerebellum
(bottom traces) about task contingencies, allowing
it to associate particular actions (encoded by
specific modules) with upcoming rewards,
generating predictive action maps.
(B) Left: In well-trained experts, most trials are
executed accurately and rewarded. Right: Accu-
rate activity in cerebellar modules that predict re-
warded actions may assist the basal ganglia in
anticipating future rewards, allowing it to reinforce
specific actions that will lead to rewards.
(C) Left: When sensorimotor perturbations are
applied in trained subjects, they increase move-
ment variability in order to gain rewards through
exploration. Right: Previously rewarded actions no
longer lead to successful outcomes, leading to
negative prediction errors in the basal ganglia and
cerebellum. New sensorimotor coupling is learned
based on occasional reward, updating the cere-
bellar internal model.
(D) Left: Following successful adaptation, subjects
learn new sensorimotor contingencies but retain
bias for original actions. Right: The cerebellum
learns new sensorimotor mapping and delivers
accurate action-predictive signals to the basal
ganglia, aiding in the anticipation of future rewards
and reinforcement of new appropriate actions.
(E) Left: Once adaptation learning has taken place,
adapted sensorimotor mapping is transiently
maintained. Right: Rewards obtained through
original sensorimotor mapping are represented as
novel rewards and evoke positive reward predic-
tion errors in the basal ganglia, helping the cere-
bellum to restore original sensorimotor mapping.
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reinforcement learning regime (Therrien et al., 2018). Moreover,

when reward-based feedback is sparse, control subjects in-

crease movement variability in order to explore if new actions

can produce rewards, whereas patients with basal ganglia

dysfunction fail to perform this type of exploration (Pekny

et al., 2015). Thus, reward-related information in cerebellar cir-

cuits may be used to identify and refine sensorimotor patterns

that maximize successful outcomes, whereas information sent

to the basal ganglia from the cerebellum may serve to identify

precisely which actions are most worthy of reinforcement. Our

knowledge of the anatomical pathways connecting the cere-

bellum and basal ganglia can help to explain how this bidirec-

tional learning strategy may be implemented: cerebellar modula-

tion of the deep nuclear neurons that relay the temporal

difference error (Ohmae and Medina, 2015) to midbrain dopami-

nergic neurons (Carta et al., 2019) and basal ganglia (Chen et al.,
1298 Neuron 110, April 20, 2022
2014) provides a pathway for the cerebellum to influence rein-

forcement learning. Viral tracing studies in nonhuman primates

indicate that cerebellar connections with the basal ganglia are

topographically organized; hence, sensorimotor, cognitive, and

limbic subregions in these brain areas are preferentially con-

nected (Bostan and Strick, 2018). Thus, cerebellar modules

with distinct action maps are likely to influence basal ganglia re-

gions with similar functions. This indicates that the cerebellum

may work in concert with the basal ganglia in selecting the action

that ismost likely to lead to the largest rewards. Thismay provide

a novel substrate for the view that economic utility can be re-

flected in a system’s motor outputs (Shadmehr et al., 2019).

Finally, combining error-based and reward-based learning in

the climbing fiber system may be a necessary consequence of

learning in multiple stages. For learned or well-parameterized

tasks, the relevant error signals are known and easily
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implemented. Indeed, in conditions where reliable sensory error

signals are available, such as when trained animals occasional

miss the target of a reaching movement, error-based learning

predominates over reward-based learning (Izawa and Shad-

mehr, 2011). In contrast, when learning complex new tasks,

the appropriate error signals are initially unknown and may

change depending on task contingencies (Wagner et al., 2019),

in which case estimating future success using reward-based

learning may provide the best strategy.

We can thus speculate about the potential interactions be-

tween the cerebellum and basal ganglia during real-world

learning situations where both reward-based and error-based

mechanisms are engaged. In this framework, summarized in

Figure 3, during the earliest stages of learning, before-task out-

comes can be readily assessed using sensory feedback, the

reward systemmay aid the cerebellum in the construction of ac-

curate models that map successes and failures onto sensory

predictions (Figure 3A). It achieves this by sending a copy of

the reward signals (triggered by successful outcomes) in the

dopaminergic neurons to the cerebellar circuits to inform the cer-

ebellum about the value of a particular motor action, driving

learning in specific actionmodules that resulted in rewarded out-

comes. As the subject becomes an expert in the task, the cere-

bellum learns accurate sensorimotor mapping by updating and

refining an internal model to incorporate the value of a particular

action, specifically in cerebellar modules that are involved in per-

forming this action. In other words, the cerebellum learns to

extend an internal model from accurately predicting the sensory

consequences of motor actions to also predicting the values of

these actions. The cerebellar internal model could then in turn

convey confident predictive signals for these specific actions

to the basal ganglia, aiding in their reinforcement (Figure 3B).

In subjects with cerebellar damage, these accurate estimates

of sensorimotor mapping may be difficult to generate, leading

to slow or inappropriate learning (Therrien et al., 2018). Now, if

sensorimotor contingencies are changed in expertly trained sub-

jects, movement variability is increased as reward rates drop, a

process that depends on proper basal ganglia function (Pekny

et al., 2015). This increased variability results in occasional re-

wards that reinforce these new actions and allow the basal

ganglia to alert the cerebellum that it should once again update

the internal model (Figure 3C). As these new sensorimotor con-

tingencies are learned, the cerebellum generates new robust

action-predictive signals, and rewards obtained in this

new contingency become predictable (Figure 3D). Finally, if the

original sensorimotor contingencies are then restored, the

adapted behavior is transiently maintained in healthy subjects

(Figure 3E). In patients with cerebellar damage, retention of

new contingencies is only ensured if they were learned through

a reward-based mechanism (Therrien et al., 2016).

Reward signals as a substrate for the role of the
cerebellum in cognition
The wider implications of the discovery of cerebellar reward-

related signaling are that the cerebellum is involved in regulating

a far greater range of behaviors than simply motor control. This

suggestion taps into a deep vein of cerebellar research suggest-

ing that this structure might be involved in cognitive processing
(Ito, 2008; Leiner et al., 1991, 1993; Middleton and Strick,

2000; Schmahmann, 1991; Sokolov et al., 2017). Indeed, internal

models of mental activities were initially postulated by Ito as an

analogy to internal models for motor control (Ito, 2008). The sug-

gestion that the cerebellummay support a range of cognitive be-

haviors is supported by the recently identified anatomical path-

ways described above (Figure 2A), which place the cerebellum

not only at the nexus between the motor and sensory systems

but also with dense reciprocal connectivity with all regions of

the cerebral cortex, as well as the basal ganglia (Caligiore

et al., 2017; Chabrol et al., 2019; Gao et al., 2018; Middleton

and Strick, 2000; Strick et al., 2009). Further support is provided

by the fact that disruption of cerebellar activity, connectivity, and

development causes deficits in a variety of social and cognitive

behaviors (Badura et al., 2018; Carta et al., 2019; Deverett

et al., 2018; Stoodley et al., 2017; Tsai et al., 2012). The recent

findings that cerebellar reward signals may contribute to rein-

forcement learning suggest that the cerebellum may help to

select the most valuable action and, in concert, ensure the cor-

rect execution of that action for a wide range of behaviors. The

new spotlight on cerebellar reward signaling may therefore

lead to fresh insights into learning mechanisms mediated by

many brain areas.
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Váradi, and Mark Wagner for helpful discussions and for comments on the
manuscript and and Gil Costa for help with illustration in Figure 2A. This
work was supported by the Wellcome Trust (M.H., PRF 201225/Z/16/Z),
ERC (M.H., AdG 695709), and EMBO (D.K., ALTF 914-2015).
DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Albus, J.S. (1971). A theory of cerebellar function. Math. Biosci. 10, 25–61.
https://doi.org/10.1016/0025-5564(71)90051-4.

Apps, R., and Garwicz, M. (2005). Anatomical and physiological foundations of
cerebellar information processing. Nat. Rev. Neurosci. 6, 297–311. https://doi.
org/10.1038/nrn1646.

Badura, A., Schonewille, M., Voges, K., Galliano, E., Renier, N., Gao, Z., Witter,
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