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The cerebellum is thought to facilitate smooth behavioral 
execution and learning by generating expectations about the 
sensory consequences of actions and using sensory input to 

inform future motor output—that is, forming internal models of 
how we interact with the world1,2. Purkinje cells, the output neurons 
of the cerebellar cortex, are crucial for the construction and updat-
ing of internal models3. These neurons receive thousands of inputs 
from parallel fibers carrying contextual sensory and motor infor-
mation, and a single but exceptionally strong input from a climb-
ing fiber. These climbing fibers, which generate complex spikes in 
Purkinje cells, carry supervisory instructive signals and modify the 
synaptic weights of parallel fiber inputs to Purkinje cells4–6.

Climbing fiber activation triggers complex spikes in Purkinje 
cells at low rates (~0.5–2 Hz) and yet exerts a powerful influence on 
cerebellar function at the level of Purkinje cell populations. This is 
due to the anatomical and functional relationships between inferior 
olive neurons, the source of climbing fibers, and Purkinje cells7,8. 
Olivary neurons are gap-junction coupled and exhibit subthreshold 
oscillations9,10, and neighboring olivary neurons, which innervate 
neighboring Purkinje cells, fire action potentials synchronously 
and consequently trigger synchronous complex spikes in neighbor-
ing Purkinje cells. In this way, functional clusters of Purkinje cells, 
known as microzones, experience climbing fiber activation coher-
ently and coordinate cerebellar output via synchronous output to 
neurons of the cerebellar nuclei11. Population recording methods 
have recently made it possible to address how olivary neurons 
engage Purkinje cell populations during behavior12–20.

In well-studied tasks that engage the cerebellum, the instructive 
signals conveyed by climbing fibers are usually considered as error 
signals in an extrinsic framework; for example, retinal slip during 
visual tracking21,22. However, there is increasing evidence for the 
cerebellum’s involvement in a higher-order processing23 includ-
ing spatial navigation24, language processing25 and, notably for 
our study, reward15,26. We therefore examined whether the climb-
ing fiber inputs to Purkinje cells may carry internally generated 
instructive signals and tested this possibility directly by studying  

how reward context is represented by climbing fiber inputs to 
Purkinje cell populations.

We demonstrate topographically organized encoding of reward 
context in the complex spiking patterns of Purkinje cell populations 
in the lobule simplex of the cerebellar cortex, a region traditionally 
thought to modulate forelimb movements15,27. We recorded den-
dritic calcium signals (a proxy for climbing fiber input and complex 
spikes) using two-photon microscopy and made direct recordings 
of complex spikes using Neuropixels probes while mice received 
rewards with varying degrees of predictability: after performing 
a trained motor action, after a tone cue that preceded reward by 
a fixed delay and randomly without prompting. Population activ-
ity of Purkinje cells represented reward context in a diverse but 
predictable manner organized spatially into microzones: some 
microzones exhibited elevated activity at reward delivery (‘reward-
activated microzones’), while other microzones were inhibited 
(‘reward-suppressed microzones’). Some of these microzones also 
exhibited an elevated rate of complex spiking in anticipation of 
upcoming reward, with this behavior preferentially expressed in 
reward-suppressed microzones. When rewards were omitted on 
motor trials, both reward-activated and reward-suppressed micro-
zones exhibited omission-related feedback error signals. Omitting 
tone-cued rewards also triggered feedback error signals and these 
signals occurred just after the time of expected reward. Finally, the 
degree of reward predictability modulated reward-related sensory 
responses in a graded fashion: the more predictable the reward, the 
smaller the sensory response it triggered. Combined with the recent 
demonstration that cerebellar granule cells also encode reward con-
text26, our data demonstrate that the cerebellar cortex has access to 
the information streams necessary to create and evaluate expecta-
tions about higher-order variables.

Results
Population Purkinje cell complex spike recordings during a 
sensorimotor task. We trained mice to perform a visually guided 
sensorimotor integration task to study the variety of climbing fiber 
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signals conveyed to Purkinje cells during behavior. Mice were 
head-fixed in front of an array of monitors and trained to use a 
steering wheel placed in front of their forepaws to control a vir-
tual object (Fig. 1a, left). The object appeared at an eccentric visual 
position ~45° from the visual midline and mice had to move it into 
the center of the environment to receive a delayed water reward. 
After ~10 days of pre-training aimed to establish an association 
between steering wheel turns and virtual object movement, mice 
were transitioned to a more difficult version of the task. Here, the 
object always appeared on the same side (left) at a fixed position 
and the mice were required to make a single, continuous turn of 
the steering wheel to translate the object/wheel to a visible target 
region ±15° from the visual midline (Fig. 1a, right). Each trial was 
initiated by the appearance of the object and well-trained mice-ini-
tiated movements as soon as the object appeared. After the mouse 
initiated a wheel movement, trial outcome was assessed by the 
position of the object when the mouse had, for the first time since 
trial start, stopped moving the wheel for 100 ms continuously. If the 
object was positioned within the central target region, a delayed 
reward was given 500 ms after the object was stopped (400 ms 
from trial evaluation). Mice performed 214 ± 8 trials per session 
(mean ± s.e.m., n = 61 sessions from six mice) and there were three 
possible outcomes of each trial: undershoots, correct (rewarded) 
trials and overshoots (Fig. 1b). Behavioral performance plateaued 
after <1 week on this final task version and resulted in the following 
breakdown of performance: 28 ± 4% undershoots, 59 ± 2% correct 
trials and 13 ± 3% overshoots (mean ± s.e.m., n = 6 mice, averaged 
within mouse for sessions ≥5 of the final task version; Fig. 1c). By 
comparison, performance on days 1 and 2 of the final task version  
was significantly lower (46 ± 3% correct trials, mean ± s.e.m.,  
n = 6 mice, P < 0.05).

To image Purkinje cell populations during our task, we expressed 
Cre-dependent GCaMP6f virus in Pcp2(L7)-cre mice. Injections 
were targeted to the left lobule simplex and adjacent vermis (Fig. 1d),  
regions known to be involved in forelimb movements15,27. Purkinje 
cell population activity was recorded using resonant scanning two-
photon microscopy to measure dendritic calcium signals, faithful 
indicators of climbing fiber input and complex spiking in Purkinje 
cells28–31. Our FOVs yielded 219 ± 27 (mean ± s.e.m., n = 13 differ-
ent fields from nine mice) distinct dendritic ROIs corresponding 
to individual Purkinje cells (Fig. 1e). Individual dendritic ROIs 
exhibited fast calcium transients indicative of complex spikes and 
we extracted the size and timing of these events for each recorded 
neuron (Fig. 1f).

As a first step toward understanding how Purkinje cell activity 
is related to different aspects of the behavior, we aligned the cal-
cium responses of our neurons to two important time points in the 
task across trial outcomes: (1) movement initiation and (2) move-
ment termination and reward delivery (which occurred with a fixed 
time interval), and sorted neurons by their response during these 
epochs on correct trials. Subsets of Purkinje cells exhibited elevated 
dendritic calcium signals in the interval immediately before move-
ment initiation and during the movement itself (Fig. 1g). Because 
animals usually initiated wheel movements immediately on object 
appearance, these signals may reflect either object appearance  
(a sensory signal) or the wheel movement (a motor signal). To dis-
tinguish these (not mutually exclusive) possibilities, we compared 
activity in trials where mice reacted rapidly from those in which 
they did not and wheel movement during trials to those made dur-
ing inter-trial intervals (Supplementary Fig. 1). We found that while 
the object appearance itself could evoke responses in our recorded 
neurons, movement-aligned activity was similar for trials in which 
animals reacted quickly or slowly and also similar for wheel move-
ments initiated within and outside trials. Furthermore, trial-by-trial 
analysis of population activity as a function of reaction time showed 
a tighter linkage between activity and movement onset than object 

appearance. Thus, movement onset-aligned activity is preferentially 
related to movement.

Many Purkinje cells also exhibited elevated calcium signals in the 
interval between the end of wheel movements and the reward, and 
at the time of the reward delivery itself (Fig. 1h). Overall, we found 
that movement onset-related activity was not predictive of trial out-
come (Fig. 1i), while reward delivery on correct trials modulated 
our recorded populations potently (Fig. 1j). In subsequent experi-
ments, we explored how reward-related signals were organized in 
Purkinje cell populations and how they could be modulated by 
reward context.

Topographic organization of reward-related signals. Microzones 
constitute a fundamental unit of cerebellar processing and are 
defined by the relationship between Purkinje cells and the climb-
ing fibers that innervate them7,8,28,30,32. We asked whether the 
functional segregation of Purkinje cells activated by reward deliv-
ery maps onto microzones. To begin, instead of sorting ROIs on 
the basis of response magnitude, we sorted them on the basis of 
anatomy: orthogonally to the parasagittal axis of Purkinje cell den-
drites. This sorting revealed groups of reward delivery-activated 
and reward delivery-suppressed Purkinje cells (Fig. 2a). To classify 
individual Purkinje cells into microzones systematically in all our 
recorded FOVs, we used PCA to reduce the dimensionality of each 
dataset and performed k-means clustering followed by a series of 
validation steps to identify microzonal clusters (see Methods and 
Supplementary Fig. 2). The clustering results for our example FOV 
are plotted for the first three components in Fig. 2b. These function-
ally defined clusters mapped onto anatomically clustered Purkinje 
cell populations, revealing almost perfect mediolateral segregation 
into microzones (Fig. 2c and Supplementary Fig. 3). This method 
yielded similar results to previously established correlation-based 
methods for identifying microzones, as evident from the block-
diagonal correlation matrix structure of our sorted Purkinje cells 
(see Methods and Supplementary Fig. 3). FOVs (670 µm × 670 µm) 
contained 5.3 ± 0.3 microzones (mean ± s.e.m., n = 6 fields from 
six mice). Microzones were 170 ± 10 µm wide (~17 dendrites wide) 
and contained 34 ± 3 dendrites (n = 1,101 dendrites, 32 micro-
zones), consistent with reported microzonal widths on the order of  
100–200 µm15,28,30 (Supplementary Fig. 3).

We used our microzonal groupings to ask how functionally related 
groups of Purkinje cells encoded reward-related activity in their 
complex spiking patterns. Most Purkinje cells within a given micro-
zone exhibited similar patterns of reward-related activity (Fig. 2d) 
and microzones segregated into two groups—those that increased 
their activity on reward delivery (‘reward-activated’, Fig. 2d,  
Clusters 3, 5 and 6 and Fig. 2f) and those that decreased their activity 
on reward delivery (‘reward-suppressed’, Fig. 2d, Clusters 1, 2 and 4 
and Fig. 2g). Across our six FOVs, we found an equal proportion of 
reward-activated and reward-suppressed microzones (16 of each). 
These reward-related groupings were not strictly related to move-
ment onset-related activity, with both reward-activated (11 of 16)  
and reward-suppressed (7 of 16) microzones showing significant 
activation at the time of movement onset (assessed across trials 
for intervals −300–0 ms before movement onset and compared to 
baseline firing rates; Wilcoxon signed-rank test). We also aligned a 
subset of our FOVs (four of six) to coarser anatomical maps of the 
cerebellar surface. These coarse maps showed a gross level of stereo-
typy between animals with alternating groups of reward-activated 
and reward-suppressed neurons that could contain multiple func-
tionally identified microzones (Supplementary Fig. 4).

We next asked whether complex spikes in Purkinje cells, at the 
level of microzones, may encode upcoming reward predictively and 
whether they may signal lack of reward on incorrect trials. We found 
that both reward-activated and reward-suppressed microzones 
could exhibit elevated activity in the delay period between movement  
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Fig. 1 | Population Purkinje cell complex spike imaging during a sensorimotor task. a, Behavioral setup: mice were head-fixed in front of three monitors 
and trained to use a steering wheel to translate a virtual object from an eccentric visual position (45° left of midline) to the midline (±15° target) to obtain 
a delayed reward. b, Example behavioral trials: single undershoot (left), correct (middle) and overshoot (right) wheel trajectories, along with reward time 
and licking behavior. c, Behavioral performance in well-trained mice. Colored lines represent performance of individual mice (averaged across sessions), 
and thick black line represents average performance across mice. Data are shown as mean ± s.e.m. (n = 6 mice). d, GCaMP6f-labeled Purkinje cells in 
lobule simplex and adjacent vermis. A field of view (FOV) in a typical lobule simplex recording location is shown in cyan. Scale bar, 300 μm. e, Extracted 
Purkinje cell dendritic regions of interest (ROIs) from field highlighted in d. Scale bar, 100 μm. f, Six example Purkinje cell dendrite fluorescence traces 
(black) and extracted dendritic events (blue). The thickness of the blue line denotes event amplitude. g, Top: trial-averaged Ca2+ responses in Purkinje cell 
population aligned to wheel movement onset for undershoot, correct and overshoot trials. Cells are sorted by the first coefficient of principal component 
analysis (PCA) performed over the interval ±500 ms from movement onset on correct trials. Middle: trial-averaged steering wheel position. Bottom: trial-
averaged licking. Position and licking traces are shown as mean ± s.e.m. (n = 97 undershoots, 156 corrects and 18 overshoots). h, Same as g, but aligned to 
reward delivery and sorted by over the interval ±500 ms. Scale bar, 500 ms. Purkinje cell dendritic responses were sorted independently in g and h.  
i, Mean time course of fluorescence responses (top) and detected events (bottom) aligned to movement onset (vertical dashed line). Mean response for 
statistical comparisons was computed on detected events over an interval of −300 to 0 ms from movement onset (bar above traces). Data are shown 
as mean ± s.e.m. (n = 1,101 neurons from 6 FOVs in 6 mice). No group was significantly different from any other group (NS; Kruskal–Wallis test, H = 4.6, 
d.f. = 2, P = 0.1). j, Same as i, but aligned to reward time (500 ms after wheel stop). Mean response for statistical comparisons was computed on detected 
events over the interval of 0 to +100 ms post-reward (bar above traces). Data are shown as mean ± s.e.m. (n = 1,101 neurons from 6 FOVs in 6 mice). 
Response on correct trials was significantly different from response on undershoot and overshoot trials (Kruskal–Wallis test, H = 22.7, d.f. = 2, P = 1 × 10−5, 
significance values for Bonferroni-corrected individual comparisons: correct versus undershoot trials, P = 0.004; correct versus overshoot trials, 
P = 1 × 10−5; undershoot versus overshoot, P = 0.5). Statistics summary: n.s., not significant, **P < 0.01.
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Fig. 2 | Reward-activated and suppressed Purkinje cells segregate to distinct cerebellar microzones. a, Trial-averaged Ca2+ responses in example FOV 
aligned to reward delivery on correct trials (left) or reward delivery time on incorrect trials (right), sorted anatomically from medial to lateral and warped 
by the local curvature of our recorded Purkinje cell ROIs. Scale bar, 500 ms. b, PCA projection of z-scored Purkinje cell dendritic Ca2+ activity (spontaneous 
activity only) onto first three components. Individual ROIs are colored on the basis of k-means clustering (k = 6) of neuronal projections onto first six 
principal components (p = 6). Outlier ROIs shown in gray; n = 273 neurons. c, Anatomical mapping of functionally identified clusters. Colors correspond 
to those in b (outlier ROIs shown in gray). Scale bar, 100 μm. d, Trial-averaged dendritic events plotted separately for neurons within a cluster (left) 
and as the average microzone response (right) on correct trials. Data in right panels are shown as mean ± s.e.m. across trials. Group correspondence is 
denoted by color of y axis labels. e, Same as d for incorrect trials. Note that correct trial responses are cropped to better illustrate responses on incorrect 
trials. f, Time course of mean microzonal event rates on correct trials (black) and incorrect trials (red) for reward-activated microzones. Data are shown 
as mean ± s.e.m. across microzones (n = 16 microzones, 6 mice). g, Same as f for reward-suppressed microzones (n = 16 microzones, 6 mice). d–g, Scale 
bars, 500 ms. Gray bars indicate mean ± 2 s.d. of baseline event rate. h, Fraction of reward-activated (gray) and reward-suppressed (cyan) microzones that 
show elevated activity during the delay period on correct trials (assessed using two-sided Wilcoxon signed-rank test with Bonferroni correction), at the 
time of expected reward on incorrect trials (assessed using two-sided Wilcoxon signed-rank test with Bonferroni correction) and during the movement 
onset period on all trials (assessed using two-sided Wilcoxon signed-rank test). Statistical significance between proportions was assessed using a Chi-
squared test (n = 16 reward-activated and 16 reward-suppressed microzones, significance values for individual comparisons: delay period (correct trials), 
P = 0.03; expected reward time (incorrect trials), P = 0.03; movement onset (all trials), P = 0.15). Statistics summary: n.s., not significant, *P < 0.05.
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offset and reward (assessed across trials for delay intervals 0–200 ms 
and 200–400 ms after movement offset, and compared to interval  
500 ms before movement offset; Wilcoxon signed-rank test, 
P < 0.025 with Bonferroni correction), with a higher fraction of 
reward-suppressed microzones showing significant modulation 
(Fig. 2h). Activity during the delay period was similarly elevated 
on correct and incorrect trials (Fig. 2e–g), suggesting that mice 
used reward delivery as the ultimate signal reflecting trial out-
come. Indeed, mice that licked predictively during the delay period 
(three of six mice) did so similarly for correct and incorrect trials. 
To rule out the possibility that delay-period activation was simply a 
reflection of this licking motor program, we correlated the level of 
activation in reward-predictive microzones to the level of predic-
tive licking that each animal exhibited and found no relationship 
(Supplementary Fig. 5). Thus, predictive licking cannot explain the 
elevated activity observed during the delay period.

Subsets of activated and suppressed microzones also exhib-
ited elevated activity in the period after expected reward time on 
incorrect trials (assessed across trials for post-reward intervals  
100–300 ms and 300–500 ms after expected reward time compared 
to delay period 500–0 ms before reward time; Wilcoxon signed-rank 
test, P < 0.025 with Bonferroni correction), with a higher propor-
tion of reward-suppressed microzones showing significant modu-
lation (Fig. 2h). Thus, complex spikes in Purkinje cell populations 
collectively encode reward-related information in our task, includ-
ing putatively predictive signals, bidirectionally modulated reac-
tive signals and error-like signals associated with lack of reward on 
incorrect trials.

Predictability modulates reward-related sensory responses in 
trained mice. In some experiments, mice were occasionally pro-
vided with random rewards during inter-trial intervals of the motor 
task to maintain their motivation. When we analyzed these experi-
ments and compared reward-related responses during the task 
to those given randomly during inter-trial intervals, we noticed 
that random rewards triggered significantly larger responses than 
rewards earned during correct trials of the task (Supplementary 
Fig. 6). We reasoned that this difference may reflect an expectation-
dependent modulation of the reward-related sensory cue (solenoid 
sound), similarly to the suppression of climbing fiber responses to 
predicted periocular air puffs during eye-blink conditioning33.

To test this directly, most of the mice in our study (five of six 
mice from Fig. 2) were trained to perform the motor task with 
interleaved random or tone-cued rewards on a subset (10% each) 
of inter-trial intervals (Fig. 3a). Thus, we could compare how 
climbing fiber inputs to Purkinje cells convey information about 
random (not predictable), operant and tone-cued (fully predict-
able) rewards (Fig. 3b). Consistent with tone-cued rewards being 
more predictable (and carrying a greater degree of expectation) 
than operant rewards, all mice exhibited greater predictive lick-
ing during the delay between the tone cue and reward than dur-
ing the delay between a correctly executed operant trial and reward 
(Supplementary Fig. 7). Predictive lick was, by definition, not pres-
ent in the random reward condition. The level of reward predict-
ability had a clear influence on reward-related sensory responses: 
random reward evoked the largest signals, operant rewards evoked 
signals of intermediate size and tone-cued rewards exhibited strong 
suppression of the sensory response typically associated with 
reward delivery (Fig. 3c,d). To further validate that reward pre-
dictability exerted a suppressive effect on reward-related sensory 
signals, we also analyzed data from two mice that were trained on 
an easier version of our task, where all vigorous wheel movements 
toward the midline produced a correct trial and were rewarded 
(see Methods). In these mice, we found that reward responses were 
suppressed even more than those mice trained on our normal task 
(Supplementary Fig. 8).

How does the predictability of reward alter the patterns of activity 
displayed by populations of Purkinje neurons? To answer this ques-
tion, we computed correlations between the mean activity response 
vectors in each Purkinje cell over the interval 0–500 ms post-reward 
in our three reward conditions. Random and operant rewards trig-
gered highly correlated activity patterns, confirming that similar 
subsets of Purkinje cell dendrites were activated in these two reward 
conditions. In contrast, the correlation between activity patterns 
recruited by either random or operant rewards with those recruited 
by tone-cued rewards was lower than between random and operant 
rewards (Fig. 3e), demonstrating that reward predictability modu-
lated these responses in a similar manner. To test whether repre-
sentations of reward predictability varied continuously or whether 
they were categorically different across our reward conditions, we 
performed trial-by-trial analysis of the reward responses in individ-
ual neurons for trials with different amounts of predictive licking. 
This analysis did not show any obvious trend of greater suppression 
of the reward response in trials with stronger predictive licking for 
either tone-cued or operant rewards (Supplementary Fig. 7). Thus, 
while predictive licking was categorically different across our differ-
ent reward conditions, it was not sufficient to explain the differences 
in reward responses across different reward categories.

We also analyzed responses to random and cued rewards sepa-
rately for Purkinje cells in reward-activated and reward-suppressed 
microzones (defined during the operant motor task; Fig. 3f).  
We found that, on average, Purkinje cells from both groups were 
activated by the predictive tone cue and exhibited little modula-
tion at the time of reward. In contrast, random reward delivery 
could activate not only those Purkinje cells that were activated by 
the reward cue in the operant task, but also Purkinje cells that 
were suppressed by operant rewards. Thus, the level of predict-
ability exerts a bidirectional influence on reward-related activ-
ity across Purkinje cell populations, modulating responses when 
there is ambiguity in the outcome and remaining neutral when 
there is no ambiguity.

To validate that the reward-related modulation of Purkinje cell 
dendritic calcium signals does indeed reflect modulation in com-
plex spiking and not some other process (for example, modulation 
of dendritic calcium signals by molecular layer interneurons34), we 
complemented our imaging experiments with direct electrophysio-
logical recordings of complex spikes in Purkinje cells (Fig. 4a) using 
Neuropixels probes. We performed these experiments in a minimal 
behavioral task in which we presented mice with tone-cued and 
random rewards (without a motor task), and processed the elec-
trophysiological recordings using automated spike sorting methods 
combined with post hoc manual curation (Supplementary Fig. 9 and 
see Methods). Recordings from Purkinje cells were readily identifi-
able by a range of criteria, including the presence of complex spikes 
(Fig. 4b, left) and high-frequency simple spikes (Fig. 4b, right), 
which exhibited characteristic pauses in firing after complex spikes 
(Fig. 4c). Most recorded neurons (56/61 cells, n = 3 mice) exhib-
ited an increase in complex spikes on delivery of random rewards  
(Fig. 4d). In agreement with our imaging experiments, the response 
to tone-cued rewards in these Purkinje cells was significantly sup-
pressed (Fig. 4e,f, top). Furthermore, the minority of Purkinje cells 
in our recordings that exhibited suppressed complex spike response 
to random rewards also were activated by the tone cues and exhib-
ited minimal modulation at reward time when rewards were cued 
(Fig. 4e,f). Thus, the results of our imaging experiments are highly 
consistent with those observed using direct electrophysiological 
recordings of complex spikes.

Modulation of reward-related responses develops with train-
ing. Reward expectation must, by definition, be associated with the 
development of trained behavior and expectation signals should 
be absent in naïve mice. To test this, we analyzed recordings from 
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Fig. 3 | Predictability modulates reward responses in trained mice. a, Schematic of reward perturbation experiments: during each behavioral session, 
we randomly interspersed random rewards (10% of inter-trial intervals) or tone-cued rewards (also 10% of inter-trial intervals; 500 ms delay between 
cue onset and reward). b, Top: trial-averaged population response of a representative FOV (same as Fig. 2) to random, operant and tone-cued rewards. 
ROIs are sorted first by mediolateral position of identified microzones, then mediolaterally within each microzone. Color blocks adjacent to each heatmap 
denote microzonal designation, following the color scheme of Fig. 2 (gray, unclustered). Middle: trial-averaged steering wheel velocity. Bottom: trial-
averaged licking. Velocity and licking are shown as mean ± s.e.m. across trials (n = 30 random rewards, 156 trial rewards and 30 tone-cued rewards). 
Scale bar, 500 ms. c, Scatter plots showing pairwise comparisons of response amplitude (computed as mean over 0 to +100 ms after each event) across 
different reward conditions; n = 891 neurons from 5 FOVs in 5 mice. Data points from representative FOV (b) are shown in darker gray. d, Cell-wise average 
of Purkinje cell dendritic response to each reward-related event. Data are shown as mean ± s.e.m. (n = 891 neurons from 5 FOVs in 5 mice, Kruskal–Wallis 
test, H = 460, d.f. = 3, P = 2 × 10−99, significance values for Bonferroni-corrected individual comparisons: random versus trial reward, P = 2 × 10−18; random 
versus cued reward, P = 3 × 10−33; trial versus cued reward, P = 0.009; trial reward versus tone cue, P = 1 × 10−57; cued reward versus tone cue, P = 5 × 10−82). 
e, Summary of Pearson’s correlations between pairs of reward-related events. Data are shown as box plots: center line, median; box edges, interquartile 
range; whiskers, range without outliers; gray points, outliers (n = 891 neurons from 5 FOVs in 5 mice, Kruskal–Wallis test, H = 237, d.f. = 3, P = 5 × 10−51, 
significance values for Bonferroni-corrected individual comparisons: random and trial reward versus random and cued reward, P = 7 × 10−32; random and 
trial reward versus trial and cued reward, P = 3 × 10−35; random and cued reward versus trial and cued reward, P > 0.9; random and cued reward versus 
random reward and tone cue, P = 1 × 10−17; trial and cued rewards versus random reward and tone cue, P = 4 × 10−20). f, Time course of mean responses 
across reward conditions for Purkinje cells in reward-activated microzones (top, n = 361 neurons) and reward-suppressed microzones (bottom, n = 470 
neurons). Scale bar, 250 ms. Note that 60 neurons were not clustered into a microzone and excluded from this analysis. Data are shown as mean ± s.e.m. 
Statistics summary: n.s., not significant, **P < 0.01, ***P < 0.001.
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the first day of training, when mice could begin to form associa-
tions between rewards and the tone cues, wheel turns or solenoid 
clicks that preceded rewards. Naïve mice learned to lick to rewards 
over the course of this first session, but the majority of ‘within-trial’ 
rewards on this first day were given as auto-rewards (see Methods). 
In naïve mice, reward delivery evoked dendritic calcium events in 
Purkinje cells that were similar across all conditions (Fig. 5a–c). 
We observed the development of suppression of tone-cued rewards 
even on this first day of training. While random and within-trial 
rewards evoke similar responses, the response to tone-cued rewards 
was slightly reduced when averaging all tone-cued rewards (on 
average, ten) given on this first day. However, when we analyzed 
only the first three tone-cued rewards given in each session, we saw 
no difference in the response when we compared them to random 
rewards (Fig. 5d). Thus, the suppression of responses for predict-
able rewards was learned and could develop rapidly during training.  
To further support the idea that mice learned to associate task 

parameters and reward, we compared the latency to the first lick 
for random rewards in naïve and trained mice. The lick latency in 
trained mice was significantly shorter than in naïve mice, consistent 
with a learned association that developed with training (Fig. 5e).

Fictive reward on operant trials triggers error signals across 
microzones. We next tested how omission of reward could pro-
duce an error response, similar to that observed at reward time on 
incorrect motor trials and to the reward-omission response recently 
reported by Heffley and colleagues15. We took advantage of the fact 
that the solenoid valve-associated sensory cue that was audible at 
reward time represents the most immediate signal that reward 
would be delivered across reward conditions in our task. We intro-
duced perturbation trials on 10% of correct trials in our motor task 
in which we triggered an identical solenoid valve to the one that nor-
mally delivered our reward but was not coupled to reward: that is we 
gave a fictive reward (Fig. 6a). In five of our six mice, we recorded 

b

200 µV

1 ms

CS waveform SS waveform

0

3

6

9

12

15

0

1

2

3

4

5

0 500–500

Time from reward (ms)

C
om

pl
ex

 s
pi

ke
 r

at
e 

(H
z)

C
om

pl
ex

 s
pi

ke
 r

at
e 

(H
z)

0 500–500

Time from reward (ms)

Reward-suppressed Purkinje cell
(single neuron)

Random reward Cue Reward

Reward-activated Purkinje cell
(single neuron)

d

0 20 40–20–40

Time from complex spike (ms)

R
el

at
iv

e 
re

co
rd

in
g

de
pt

h 
(µ

m
)

+20

0

–20

SSs
CSs

a

e

0

3

6

9

12

15

0

1

2

3

4

5

Time from reward (ms) Time from reward (ms)

0 500–500

Reward-activated Purkinje cells
(population)

Reward-suppressed Purkinje cells
(population)

Random reward Cue Reward

0 500–500

15

12

9

6

3

0

E
ve

nt
 r

at
e 

(H
z)

Random reward-activated
PCs (imaging data)

f

5

4

3

2

1

0

E
ve

nt
 r

at
e 

(H
z)

Cue Reward

Random reward-suppressed
PCs (imaging data)

Cued rewards
Random rewards

1.5

1

0

0.5

0 20 40–20–40

Time from complex spike (ms)

S
im

pl
e 

sp
ik

e 
ra

te
 (

no
rm

.)

c

Fig. 4 | electrophysiological recordings of complex spikes during cued and random reward presentation. a, Example raw traces (gray) recorded on three 
adjacent vertically consecutive sites (20 µm vertical separation) of a Neuropixels probe within a Purkinje cell layer. The simple spikes and complex spikes 
of a single Purkinje cell are highlighted in black and red, respectively. Scale bar, 500 μV. Several other Purkinje cells were identified in this recording but 
are not highlighted. b, Examples of waveforms of complex spikes (CS waveform, left) and simple spikes (SS waveform, right) recording using Neuropixels 
probes (same recording as in a). Each panel shows detected spike waveform (mean ± s.d.) and 20 overlaid raw traces. c, Normalized histogram of simple 
spike firing rate (same neuron as a and b) aligned to time of complex spikes, demonstrating the characteristic post-CS pause. d, Peristimulus time 
histogram (bin size = 10 ms) of complex spikes in example units that were activated (top) and suppressed (bottom) by random reward delivery on random 
reward trials (left) and cued reward trials (right); n = 146 random rewards and 154 cued rewards. e, Same as d but for all recorded units that showed 
activation (top, n = 56 neurons from three mice) and suppression (bottom, n = 5 neurons from three mice) to random reward delivery. Data are shown as 
mean ± s.e.m. f, Random and tone-cued reward responses (imaging data) in Purkinje cells (PCs) activated by random reward (top, n = 280 neurons,  
236 of 361 from trial reward-activated microzones and 44 of 470 from trial reward-suppressed microzones) and Purkinje cells suppressed by random 
reward (bottom, n = 273 neurons, 28 of 361 from trial reward-activated microzones and 245 of 470 from trial reward-suppressed microzones). Modulation 
of individual Purkinje cells was assessed by comparison of response in post-reward period (33–133 ms post-reward) to pre-reward withhold period (1 s). 
Scale bar, 250 ms. Data are shown as mean ± s.e.m.
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from FOVs that showed reward-related activity (Fig. 6b compared to 
Fig. 2c) and measured the differences in neural activity and behavior 
between real and fictive reward presentation (Fig. 6c,d). Responses on 

trials with real and fictive reward were similar during the pre-reward 
delay period and the immediate post-reward period (Fig. 6c–g),  
demonstrating that mice could not distinguish between the sound 
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Fig. 5 | Modulation of reward-related responses develops with training. a, Top: trial-averaged population response of a representative FOV (same as  
Fig. 2) to random, operant and tone-cued rewards in naïve mice (first training session). ROIs are sorted first by mediolateral position of identified 
microzones, then mediolaterally within each identified microzone. Color blocks adjacent to each heatmap denote microzonal designation, following the 
color scheme of Fig. 2 (gray, unclustered). Middle: trial-averaged steering wheel velocity. Bottom: trial-averaged licking. Velocity and licking are shown 
as mean ± s.e.m. across trials; n = 8 random rewards, 70 trial rewards and 10 tone-cued rewards. Scale bar, 500 ms. b, Scatter plots showing pairwise 
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5 FOVs in 5 mice. Data points from a representative FOV (a) are shown in darker gray. c, Cell-wise average of Purkinje cell dendritic response to each 
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and naïve mice (first three trials only, red). Data are shown as mean ± s.e.m.; n = 400 neurons (of 891) in trained mice and n = 710 neurons (of 1,187) in 
naïve mice (Kruskal–Wallis test, H = 1857, d.f. = 11, P < 1 × 10−99, significance values for Bonferroni-corrected individual comparisons: trained versus naïve 
mice (trial reward), P = 1 × 10−73; trained versus naïve mice (cued reward), P = 1 × 10−59; trained versus naïve mice (tone cue), P = 3 × 10−15; naïve mice (all 
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e, Comparison of latency to first lick in trained mice (gray) and naïve mice (cyan). For naïve mice, trials in which mice did not produce a lick to reward 
delivery (typically the first 5–10 rewards) were excluded (n = 5 trained mice and 4 naïve mice; licks were not registered for one naïve mouse). Data are 
shown as mean ± s.e.m., P = 0.02 (two-side Wilcoxon rank-sum test). Statistics summary: *P < 0.05, ***P < 0.001.
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of real and fictive reward. However, Purkinje cells exhibited strong 
activation in the later post-reward period (+100 to +200 ms)15, pre-
sumably when mice realized the lack of reward delivery (Fig. 6c–f). 
This reward-related error signal was present across our two groups 
of Purkinje cells (Fig. 6g). Thus, reward-related error signals tran-
scend microzone boundaries: both reward-activated and suppressed 
microzones can convey these signals.

Feedback error signals caused by omission of tone-cued reward. 
Modulation of reward-related activity on tone-cued rewards is dras-
tically reduced in trained animals. Given the cerebellum’s crucial 
role in motor timing3,12,33,35, we reasoned that mice may learn the 
delay interval between the cue and reward for tone-cued rewards 
and wondered how violations of this expectation would be rep-
resented in the climbing fiber input to Purkinje cells. To test this 
directly, we introduced tone cues in our task that were not fol-
lowed by rewards (Fig. 7a). To obtain enough repetitions for each 
condition, we altered the likelihood of the reward event types dur-
ing inter-trial intervals of our operant task, such that 30% of inter-
vals contained a cued reward and 10% of intervals contained a cue 
but no reward (3:1 reward-to-omission ratio) and recorded from 
the same five mice subjected to fictive reward (Fig. 7b). In two of 
these mice, we also recorded video of orofacial movements dur-
ing these experiments (Supplementary Fig. 10). Cued omission of 
reward evoked responses in many Purkinje cells (Fig. 7c,d) at the 
time of expected reward (computed over 0–200 ms post expected 
reward, Fig. 7e,f). These error signals were related to the expecta-
tion based on the tone cue, because we omitted any sensory signal at 
the time of the reward itself. Responses to the tone cue were similar 
for rewarded and unrewarded cues (Fig. 7e,f). We again asked if 
Purkinje cells defined as reward-activated and reward-suppressed 
in our motor task encoded this reward omission differently and 
found that, as for our analysis of incorrect trials during the motor 
task, these error responses were expressed more strongly (but not 
exclusively) by neurons in reward-suppressed microzones (Fig. 7g). 
We also validated that these omission responses were present in our 
electrophysiological recordings of Purkinje cells by omitting cued 
rewards in our simple conditioning task. We found neurons with 
significant increases in complex spike rates at expected reward time 
(Fig. 7h), confirming that omission-related error signals identified 
in our imaging experiments are reflected in the underlying complex 
spike patterns of Purkinje cells.

Discussion
The nature and variety of signals conveyed to Purkinje cell popula-
tions by climbing fibers has been vigorously debated. This debate 
has centered on whether climbing fibers carry feedback error sig-
nals or timing signals to sculpt ongoing and future actions36. Here 
we show that when mice learn to associate multiple parameters—
operant wheel movements, tone cues and solenoid clicks—with 
reward, this reward context is encoded in climbing fiber input to 
Purkinje cells. Specifically, climbing fiber signals encode parameters 
related to internally generated expectations, namely those relating 
to reward expectation, delivery and evaluation. In this way, the 
cerebellum can use all relevant signals—be they self-generated or 
sensed—to make predictions about the future, evaluate these pre-
dictions and relay them to the rest of the brain.

Microzonal organization of reward signals in Purkinje cells. Our 
results demonstrate that climbing fiber inputs signal reward bidirec-
tionally, as activation and suppression, via distinct but adjacent groups 
of microzones7,32. Purkinje cells in microzones that were suppressed 
by reward delivery were more likely to exhibit reward-predictive 
activity, while Purkinje cells that exhibited reward-related sensory 
responses exhibited expectation-dependent modulation of these 
responses. However, when reward was expected but not delivered,  

both groups could exhibit error signals in response to this violated 
expectation. Notably, these error signals were strongest (that is, 
strongly engaged in both reward-activated and reward-suppressed 
microzones) in our fictive reward condition, when mice both made 
the correct action and were provided with the reward-associated 
sensory signal, and less prominent on incorrect motor trials and 
when tone-cued rewards were omitted. Mice also made larger, less 
stereotyped orofacial movements on omission of expected reward, 
presumably in search of the reward they were expecting. The gen-
erality of these error signals, which manifest both on a neural and 
behavioral level, suggests that when expectations are violated, 
climbing fibers may be activated in a heterogeneous manner to 
destroy previously created associations, since the outcomes of these 
expectations were not fulfilled.

Learned, temporally specific suppression of sensory responses 
to predictable rewards. The degree of predictability of upcoming 
reward exhibited a profound influence on reward-related signals in 
our trained mice. The greater the likelihood of upcoming reward, 
the greater the suppression of responses to reward. Reward delivery 
elicited large climbing fiber responses in Purkinje cells when reward 
was delivered randomly, moderate responses when reward was deliv-
ered in a motor trial context in which success was not guaranteed and 
virtually no responses when reward was cued with a fully predictive 
tone. These reward-related expectations developed with training: 
responses to reward were similar at the very beginning of training 
and suppression of predictively reward-related signals developed rap-
idly (during the first training session for fully predictable rewards). 
The mechanism of this suppression is unclear, but a potential source 
may be the cerebellum itself, whose output could exert either an indi-
rect excitatory or direct inhibitory influence over the inferior olive37. 
These expectation signals were also temporally specific: omission 
of reward on tone-cued trials evoked omission-related activation of 
Purkinje cells specifically at the time of expected reward.

Relationship between reward-related signals in the two input 
streams to Purkinje cells. Cerebellar granule cells have recently 
also been shown to encode reward26, presumably driven by mossy 
fiber input of unknown origin. Assessing the similarity of these 
granule cell signals with reward-related climbing fiber signals will 
require a careful comparison of the reward contingencies of these 
signals, ideally using the same behavioral task. Specifically, a spatial 
organization of reward-related signals (Fig. 2a–d) and activity sup-
pressed by reward (Fig. 2g) have not yet been observed in granule 
cells. If the granule cell and climbing fiber-mediated reward signals 
indeed exhibit similar behavioral contingencies, it will be interest-
ing to examine whether these signals converge on the same Purkinje 
cells, as might be expected from microzonal functional organiza-
tion7. Simultaneous encoding of reward-related signals by granule 
cell and climbing fiber inputs to Purkinje cells parallels the acquisi-
tion of predictive signals in these inputs during delayed eye-blink 
conditioning33,38. Robust representation of reward signals in these 
two input pathways, which can drive plasticity mechanisms in 
Purkinje cells, may be crucial for the role of the cerebellar cortex in 
guiding learned behavior.

Relationship with reward signals elsewhere in the brain. Our 
data highlight the diversity of information about reward expecta-
tion and delivery provided by climbing fiber inputs to Purkinje 
cells. Reward-related complex spike responses are inversely scaled 
by reward predictability in both reward-activated and reward-sup-
pressed microzones, consistent with temporal-difference prediction 
error models39 invoked in studies of the midbrain dopaminergic 
system40,41 and for Purkinje cells during eye-blink conditioning33. In 
this framework, unexpected stimuli should evoke stronger responses 
than predictable ones. However, in contrast to the predictions  
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Fig. 7 | omission of cued rewards triggers feedback error signals. a, Schematic of cued reward omission: during each behavioral session, we randomly 
interspersed random rewards as in previous experiments (10% of inter-trial intervals), tone-cued rewards (30% of inter-trial intervals) or tone cues with 
reward omitted (10% of inter-trial intervals). b, Anatomical mapping of functionally identified microzones from an example FOV (same as Fig. 2 but on a 
different recording day). Outlier ROIs shown in gray. Scale bar, 200 μm. c, Top: trial-averaged population response of a representative FOV to tone-cued 
rewards and omissions. ROIs are sorted first by mediolateral position of identified microzones, then mediolaterally within each identified microzone. Color 
blocks adjacent to each heatmap denote microzonal designation. Middle: trial-averaged steering wheel velocity. Bottom: trial-averaged licking. Velocity 
and licking are shown as mean ± s.e.m. across trials; n = 59 cued rewards and 20 cued omissions. Scale bar, 500 ms. d, Mean difference image (smoothed 
over three frames) comparing responses to real and fictive rewards. e, Pairwise comparisons of reward-related responses at different time intervals 
after delivery of real and fictive rewards. Data pooled from 765 Purkinje cell dendritic ROIs from 4 FOVs in 4 mice (1 FOV per mouse). Data points from 
a representative FOV (b) are shown in darker gray. f, Cell-wise average of Purkinje cell dendritic response to each reward-related event measured over 
interval 0–200 ms after each event. Data are shown as mean ± s.e.m. and statistical significance between cued rewards and cued omissions was assessed 
using the two-sided Wilcoxon signed-rank test (n = 765 neurons from 4 FOVs in 4 mice, P = 2 × 10−42). g, Time course of mean event rates (from imaging 
experiments) on real reward trials (black) and fictive reward trials (red) for Purkinje cells in reward-activated microzones (left, n = 349 neurons) and 
reward-suppressed microzones (right, n = 362 neurons). Note that 54 neurons were not clustered into a microzone and excluded from this analysis.  
h, Time course of mean complex spike rates (from electrophysiology experiments) on real reward trials (black) and fictive reward trials (red)  
(n = 7 neurons from 3 mice). Electrophysiological complex spike recordings were acquired without a motor task. g,h, Scale bars, 250 ms.  
Data are shown as mean ± s.e.m. (P = 0.02, two-sided Wilcoxon signed-rank test). Statistics summary: *P < 0.05, ***P < 0.001.
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of temporal-difference models, in which neurons activated by 
reward delivery would be suppressed by omission of reward (and 
vice versa), we observed that reward omission was signaled as an 
increase in the climbing fiber input in both reward-activated and 
reward-suppressed Purkinje cells15.

The ramp-like increase in climbing fiber activity observed in 
some Purkinje cells in anticipation of reward (Fig. 2d–h) represents 
a non-canonical mode of firing for climbing fibers, which typically 
have been reported to exhibit brief changes in firing rates locked to 
sensory and motor events. The mechanism of this steady activation 
is not clear, but it may reflect a change in excitability of olivary neu-
rons triggered by descending inputs from the cerebellum itself37,42–44. 
These patterns of activation are similar to those of GABAergic neu-
rons in the ventral tegmental area41 and serotonergic neurons in the 
dorsal raphe nucleus45, which progressively increase their activity in 
anticipation of upcoming reward.

Understanding how cerebellar circuits engage with processing of 
reward in other parts of the brain is an important avenue for future 
research. The afferent inputs to the inferior olive arise from a vari-
ety of cortical and subcortical sources37,46. Cerebellar outputs target 
the midbrain dopaminergic system47 and can influence both premo-
tor48,49 and basal ganglia50 circuits via the thalamus. Thus, the olivo-
cerebellar system may interact with the canonical reward circuitry 
of the brain through these reciprocal connections. Overall, our find-
ings lend further support to the idea that the cerebellum coordinates 
with the rest of the brain to process a range of cognitive functions.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-019-0381-8.
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Methods
Animals. All animal procedures were approved by the local Animal Welfare and 
Ethical Review Board at University College London and performed under license 
from the UK Home Office in accordance with the Animals (Scientific Procedures) 
Act 1986. We used male Pcp2(L7)-Cre mice (line Jdhu—B6.Cg-Tg(Pcp2-
Cre)3555Jdhu/J)51 aged between three and six months. Male mice were preferred 
in our task because they were larger and more willing to initiate wheel movements 
at the beginning of training, facilitating more rapid learning in our task. Mice 
were group housed before surgery, single-housed after surgery and maintained 
on a 12/12 day-night cycle. In total, data from 12 mice (nine imaging and three 
electrophysiology) were used in this study.

Headplating, virus injection and chronic window installation. A minimum of 2 h 
before surgery, mice were injected with dexamethasone to reduce swelling during 
surgery. A single procedure, during which mice were maintained under 1.5–2% 
isoflurane anesthesia, was performed on each mouse lasting approximately 2 h to 
install a headplate over the cerebellar cortex, infect Purkinje cells with GCaMP6f 
and install a chronic window for chronic imaging experiments. Buprenorphine 
(1 mg kg−1, subcutaneous, Vetergesic) was administered peri-operatively for 
analgesia. Once mice were anesthetized, custom headplates with an oval inner 
opening 7 mm long and 9 mm wide were installed over the forelimb regions of 
the cerebellar cortex on the left side of each mouse (lobule simplex and adjacent 
paravermis lobules V and VI) and secured with dental cement (Super-Bond C&B, 
Sun-Medical). This corresponded to the posterior tip of the interparietal bone, 
1.8 mm displaced from the midline (approximately 6 mm caudal and 1.8 mm lateral 
from bregma). Mice to be used for imaging experiments were next injected with 
virus and implanted with a cranial window, while mice used for electrophysiology 
experiments were allowed to recover at this point.

For mice used in imaging experiments, we performed a 3 mm craniotomy, 
centered in the middle of the headplate hole, to expose the cerebellar cortex 
for virus injection and window installation. We then injected Cre-dependent 
GCaMP6f52 virus (AAV1.CAG.Flex.GCaMP6f.WPRE.SV40) diluted 1:12 from 
stock titer in three locations spanning paravermis and intermediate lobule simplex. 
At each location, ~100 nl of virus solution was pressure-injected at depths of 500, 
375 and 250 µm below the cerebellar surface at 2 min intervals. We waited ~5 min 
after the final of set of three injections before retracting the injection pipette. In 
total, ~1 µl of diluted virus was injected per mouse. Finally, a 3 mm single-paned 
coverslip was press-fit in to the craniotomy, sealed to the skull by a thin layer of 
cyanoacrylate (VetBond) and fixed in place by dental cement. The conical portion 
of a nitrile rubber seal (RS Components, stock number 749-581) was then glued to 
the headplate with dental cement and filled with Kwik-Cast to protect the window 
preparation during recovery and between recording sessions. Mice were allowed to 
recover for a minimum of 7 days before beginning water restriction, during which 
time they were given post-operative analgesia as needed.

After mice had recovered from surgery, they were placed under water 
restriction for at least 5 days during which time they were acclimated to the 
recording setup and expression-checked. All mice were maintained at 80–85% 
of their initial weight over the course of recording experiments. Trained mice 
typically received all their water for the day from rewards during the behavioral 
task, while naïve mice were supplemented to 1 g water per day with Hydrogel.

On the day of electrophysiology experiments, a small craniotomy (<1 mm 
diameter) was performed over the proximal part of lobule simplex under brief 
anesthesia (<20 min), a nitrile rubber seal was affixed to the headplate to act as a 
recording chamber and the chamber was filled with Kwik-Cast. Mice were allowed 
to recover for >2 h before experiments began.

Behavior. Motor task training protocol. Mice were head-fixed in front of an array 
of three monitors with screens arranged at 135° relative to each other and the 
central screen directly in front of the mouse (creating three sides of an octagon). 
Below their forepaws was a Lego rubber tire that could be rotated left and right and 
whose angle was measured using a rotary encoder coupled to the wheel’s axle. We 
used the MATLAB-based software ViRMEn53 to construct and operate the virtual 
reality environment. The rotation of the steering wheel translated the virtual object 
(a revolving black and white beach ball) displayed on the screens during each 
operant motor trial.

Mice were initially trained to translate the virtual object, which appeared in 
the middle of either the left or right screens (at +45° or −45°), toward the visual 
midline to receive a reward (inspired by the visual decision-making task of Burgess 
and colleagues54), at a high wheel gain (9° per mm wheel rotation). On the first 
few days of training, the virtual object drifted toward the midline and triggered an 
auto-reward after a long delay (60–180 s). These auto-reward sessions were useful to 
allow mice to make the initial associations necessary to perform the more difficult 
versions of the task. The data from naïve mice shown in Fig. 5 come from the first 
day of these auto-reward sessions. After several days (~1 week of training), mice 
learned to make wheel turns on their own accord to receive rewards. At this point, 
they were switched to a unilateral version of the task (left trials only) and increased 
the difficulty in multiple steps. We decreased the gain to 6° per mm and rewarded 
all trials in which the mice moved the object past the visual midline. This simplified 
task version facilitated training mice to react rapidly to object appearance and to 

make vigorous movements. The data shown in Supplementary Fig. 8 come from 
this task version. We then made the task slightly harder by decreasing the gain to 
2.25° per mm, so that mice had to make more than one movement (typically two) 
to get the wheel to the target region (±15° from the visual midline) and only reward 
trials in which the object was left unmoved in the target region for 500 ms. After 
mice learned to do this consistently (on >70% of trials), we analyzed the wheel 
movements for each mouse and identified a gain for each mouse that was most likely 
to produce a correct trial in a single movement—defined as one where the wheel 
is stopped in the target region for 100 ms. The mean gain across the mice used in 
this study was 3.3 ° per mm corresponding to a 13.6 mm translation of the wheel to 
hit the center of the target (range 2.5–4° per mm). On the first day that mice were 
trained on this final task version, their performance was 30–50% and plateaued 
at ~60% after about 1 week of training on this final task version. All recordings in 
‘trained’ mice were performed after behavior had plateaued.

Rewards on correct trials consisted of ~3 µl of a sugar water solution (5% 
sucrose) and were delivered through a solenoid valve (NResearch, part number 
225PNC1-21) whose click was audible to the mouse. Reward delivery on correct 
motor trials was delivered 400 ms after trial evaluation (500 ms after the wheel 
stopped moving) and were followed by short (0–2 s) timeout, while incorrect 
motor trials were followed by a long (5–7 s) timeout. After completion of the 
timeout, a variable withhold period (1.5–2.5 s) was enforced, in which time mice 
were obligated to not lick or turn the steering wheel. Licks were detected using an 
electrical lick circuit55. As indicated in the main text, random or tone-cued reward 
were administered on the completion of these withhold periods. Tone cues for 
reward trials consisted of a 100 ms long, 4 kHz tone followed by 400 ms of silence 
before reward delivery. The timing of these cued reward was designed to mimic 
those of the operant motor rewards, which required the wheel to be stopped for 
100 ms to trigger a reward 400 ms later (same 500 ms total delay). Random rewards 
were given immediately on the completion of the withhold period. In all mice 
used for the analyses in this study, random and tone-cued reward were included 
throughout training with 10% probability of each extra reward type being given 
on any single inter-trial interval, except in perturbation experiments as indicated. 
Behavioral parameters and task-related triggers were fed back to the virtual reality 
system through an Arduino and National Instruments DAQ card (NI USB-6212).

Pavlovian conditioning protocol. Mice used for Neuropixels electrophysiology 
experiments were trained on a Pavlovian conditioning protocol consisting of 
an equal mixture of cued and random rewards during training (nine training 
sessions). The same tone cues, timing intervals and solenoid valves were used for 
these experiments as for the tone-cued and random reward imaging experiments. 
On the day of recording (session 10), mice were presented with 50 baseline trials 
of cued and random rewards (equal probability), after which 20% of rewards were 
randomly omitted.

Data acquisition. Two-photon calcium imaging. Imaging experiments were 
performed through a 16×/0.8 NA objective (Nikon) using a Sutter MOM 
microscope equipped with the Resonant Scan box module. A Ti:Sapphire laser 
tuned to 930 nm (Mai Tai, Spectra Physics) was raster scanned using a resonant 
scanning galvanometer (8 kHz, Cambridge Technologies) and images were 
collected at 512 × 512 pixel resolution over FOVs of 670 μm × 670 µm at 30 Hz. 
Sample plane power used for recordings ranged from 30 to 70 mW and recordings 
were performed midway between the pial surface and the Purkinje cell body layer, 
at depths of ~75 µm. The microscope was controlled using ScanImage (v.2015, 
Vidrio Technologies) and tilted to ~10° so that the objective was orthogonal 
to the surface of the brain and coverglass. Blood vessel landmarks were used 
to approximately find the same FOV across imaging sessions and fine scale 
adjustments were made to maximize day-to-day overlap by taking short imaging 
movies (10 s) and aligning them to the previous day’s recordings.

Electrophysiological recordings. Electrophysiological recordings were made 
using Neuropixels (‘Phase 3A’) electrode arrays56 mounted on a custom three-
dimensionally printed plastic piece and affixed to a three-axis micromanipulator 
with one axis tilted to be perpendicular to stereotaxic coordinates in the sagittal 
plane. This manipulator axis was used to lower the probe into the cerebellum at  
~8 μm.s−1 to a final depth of ~3 mm. Electrodes were allowed to settle for a 
minimum of 20 min before beginning experiments. Signals were recorded from  
the distal 384 channels (covering ~3.84 mm of linear distance). Recordings were 
made in external reference mode with gain of 500 for the action potential band 
(300 Hz high-pass filter) and acquired at 30 kHz using SpikeGLX software  
(http://billkarsh.github.io/SpikeGLX/). Electrodes were coated with a lipophilic  
dye (DiI) to facilitate histological identification of electrode tracks.

Video analysis of orofacial movements. Frontal video of mice on omission trials 
was recorded at 100 Hz using an Allied Vision Mako U-130B camera. To analyze 
orofacial movements, the brightness of a region of interest surrounding each 
mouse’s mouth (~4 × 8 mm) was averaged, baseline-subtracted (eighth percentile 
of a 2 s rolling average surrounding each data time point) and aligned to behavior. 
Because the mice tongues appeared bright in these videos, we could use the 
brightness value at each time point as a proxy for tongue movements.
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Anatomical mapping and histology. The anatomical maps shown in 
Supplementary Fig. 4 were made by taking tiled z-stacks of the exposed portions 
of the cerebellum (in live mice) and stitching them to create a panoramic image 
of the cerebellar cortical surface. Imaging FOVs were manually aligned to these 
reference images.

For histological experiments requiring post-mortem histology, mice were 
deeply anesthetized with ketamine/xylazine then transcardially perfused with PBS 
then 4% paraformaldehyde in PBS. Brains were removed and post-fixed overnight 
in 4% paraformaldehyde in PBS.

Data analysis. Extraction of Purkinje cell dendritic ROIs and identification of 
putative complex spikes. ROIs corresponding to single Purkinje cells were extracted 
using a combination of Suite2p software in MATLAB57 for initial source extraction 
and custom-written software to merge over-segmented dendrites. For each 
recorded FOV, we identified individual dendrites using the following protocol:

 (1) After running initial segmentation using Suite2p, all dendritic segments 
corresponding to a fluorescent portion of a Purkinje cell dendrite in the mean 
fluorescence image were selected for further processing using Suite2p’s built-
in user interface.

 (2) Correlations of the baseline-subtracted (eighth percentile of a 2 s rolling 
average surrounding each data time point) fluorescence traces of all selected 
dendritic segments were computed. Dendritic segments that did not exhibit 
correlations above 0.5 with any other dendritic segments were classified as 
unique Purkinje cell ROIs.

 (3) The dendritic segments that did exhibit correlations above 0.5 with any other 
segment were classified into non-redundant groups. These groups were 
then visualized in a custom-written MATLAB graphical user interface that 
displayed each segment in a different color and overlaid it and its correlated 
partners on the mean fluorescence image. Segments that originated from the 
same single dendrite (that is, had highly correlated fluorescence traces and 
were aligned in the axis of Purkinje cell dendrites) were merged. A weighted 
average of the fluorescence trace of each group of merged dendritic segments 
was computed on the basis of the number of pixels in each segment.

An event detection algorithm, MLspike58, was used to identify fast dendritic 
calcium transients, faithful indicators of complex spiking activity in Purkinje 
cells28–30,59–61, in each dendritic ROI. As input to MLspike, we used baseline-
subtracted fluorescence traces (∆F) to which we added the maximum value of 
each trace (input values near zero are problematic for MLspike). The baseline 
fluorescence parameter (F0) was set as the 25th percentile of each fluorescence 
trace, the sampling rate (dt) was set at 1/30 (30 Hz) and the indicator decay 
parameter (tau) was set to 0.15. The output of MLspike is an event time, as well 
as an amplitude (an integer multiple of the unitary event size detected of each 
trace). Events detected in consecutive bins, which are very likely to reflect a large 
dendritic event corresponding to a single complex spike rather than multiple 
separate complex spikes at our imaging rates (30 Hz), were summed and binned 
in to the first time point of each sequence. Event amplitudes for each ROI were 
normalized by the mean amplitude of detected events for that ROI. The absolute 
event rate across all recorded Purkinje cell dendritic ROIs in this study was 
1.4 ± 0.4 Hz (mean ± s.d., n = 2,854 ROIs from 13 FOVs in nine mice), consistent 
with previously reported rates of complex spiking during behavior62. Event 
amplitudes were converted into rates by multiplying by the imaging frequency 
(30 Hz), creating a complex spike firing rate weighted by event amplitude. Treating 
all detected complex spike events the same (that is, setting their magnitude equal to 
1) produced very similar results (Supplementary Fig. 11).

Synchronization of behavior and recordings. All behavioral parameters—trial onset 
and offset triggers, wheel translation, reward deliveries, tone cues, virtual reality 
frame update times, two-photon imaging frame times and video frame times—
were acquired simultaneously and digitized at 5 kHz using a National Instruments 
(NI USB-6212) and saved using PackIO software63. Subsequent analysis was 
conducted off-line using custom-written scripts in MATLAB (v.2017a or 2018a).

Recorded dendritic fluorescence traces and extracted events (complex spikes) 
were aligned to different behavioral events of interest at the first frame whose 
acquisition began after each event and averaged across occurrences of each of 
these behavioral events. Wheel movement initiation was defined as the first time 
on each motor trial that wheel velocity exceeded 1 mm s−1. Binary licking traces, 
whose value was one when the mouse’s tongue contacted the lickport and was zero 
otherwise, were averaged in their raw format in all plots and quantifications.

Identification of Purkinje cell microzones. Initial spatial sorting of Purkinje cells 
was by (1) fitting a line through the pixels comprising each ROI and using this line 
to create a local direction vector for each ROI, (2) binning these ROI vectors at a 
density of 32 × 32 pixels—creating a 16 × 16 grid from our 512 × 512 pixel images 
with one mean vector per square, (3) fitting local contour lines to this grid using 
MATLAB’s ‘streamline’ function and (4) grouping ROIs by their closest local 
contour line, sorting ROIs orthogonally to this contour line and concatenating 
groups closest to each contour line. ROIs were organized and indexed from medial 
to lateral, by convention. This analysis demonstrated clearly that parasagittal 
clusters of Purkinje cells exhibited uniformity in their responses to reward.

To systematically identify functional clusters of Purkinje cells (microzones) in 
our recordings, we devised the following analysis pipeline:

 (1) We normalized our recordings by z-scoring our baseline-normalized fluo-
rescence data matrices and performed PCA on both our whole baseline data 
matrix (‘all data’) as well as just spontaneous activity obtained by concatenat-
ing the withhold periods before the start of each trial (‘spontaneous only’).

 (2) To determine the relevant principal component subspace in which to cluster 
our data, we performed 1,000 shuffles of our ‘all data’ matrix where each 
neuron’s activity was jittered in time over the interval ±400 ms (±12 imag-
ing frames). We computed a mean and standard deviation of the variance 
explained by the principal components of these temporally jittered data 
and took the first n principal components of our real data whose variance 
explained exceeded the mean + 2 s.d. of the shuffled data. The number of 
principal components with significant information varied between four and 
seven, depending on the FOV.

 (3) The coefficients associated with this number of principal components (p) 
were used for k-means clustering of the ‘all data’ matrix and ‘spontaneous 
only’ matrix. The number of clusters in this p-dimensional subspace of our 
data was chosen programmatically using silhouette criterion values to iden-
tify the optimal number from a range 1–12. To optimize clustering, centroid 
positions were re-seeded 1,000 times and the solution yielding the lowest 
within-cluster distances was used for further analysis.

 (4) Identified clusters were mapped on to anatomy and all further analysis  
was conducted using the ‘spontaneous only’ matrix to align with the  
original conception of microzones, but results from the ‘all data’ matrix 
were used as comparison.

 (5) The following criteria were applied sequentially to refine identified micro-
zones:

(a) Clusters with fewer than five members were merged with their closest 
neighbor.

(b) Clusters with clear multipeaked spatial distributions in the mediolateral 
axis were split into separate clusters. To identify multipeaked distributions, 
the mediolateral coordinates of ROI centroids were binned at ~80 µm per 
bin (64 pixels per bin) and normalized to the peak bin. Secondary peaks 
were defined as those containing counts greater than 40% of the largest bin 
of the histogram.

(c) ROIs that were spatial outliers along the mediolateral axis of a given cluster 
were excluded from further analysis. These outliers were defined as having 
a mediolateral centroid position greater than three scaled median absolute 
deviations from the median mediolateral centroid of the cluster.

 (6) We sorted Purkinje cells within each cluster’s spatial as described above and 
also sorted microzones relative to each other on the basis of median ROI 
position. Thus, we sorted ROIs inside each microzone on the basis of their 
mediolateral position and also sorted microzones relative to each other on the 
basis of their mediolateral position.

Electrophysiological analysis. Data from Neuropixels recordings were 
automatically spike sorted with Kilosort 2 (https://github.com/MouseLand/
Kilosort2)64 and manually curated using the ‘Phy’ GUI (https://github.com/
kwikteam/phy). Given the foliation of the cerebellar cortex, recordings typically 
yielded multiple crossings of the Purkinje cell layer and we were usually able to 
isolate 4–5 Purkinje cell units from each layer. Purkinje cells were identified by 
their characteristic electrophysiological signature65,66, including the presence of 
complex spikes and simple spikes. The rate of complex spikes was 1.4 ± 0.5 Hz 
(mean ± s.d., n = 61 units, three recordings from three mice). As shown in 
Supplementary Fig. 9, complex spikes exhibited either a narrow waveform followed 
by spikelets if the recording site was perisomatic, or a broader waveform when 
the recording site was dendritic, i.e., in the molecular layer66. All recording sites 
were confirmed by post-hoc histology, in which recording tracks (labeled with 
DiI coating the recording electrode) were identified in 100 µm coronal cerebellar 
sections in brains fixed after recording and counterstained using Neurotrace 
435/455 (Supplementary Fig. 9a). Recording tracks were aligned to the Allen 
Mouse Common Coordinate Framework (CCF67,68) using ‘Allen CCF tools’, a 
custom GUI for three-dimensional alignment of electrode tracks to histology69. 
Spike sorting analysis and complex spike identification were performed with the 
experimenter blind to task conditions. After these sorting procedures, units were 
aligned to behavior and grouped into reward-activated and reward-suppressed 
categories on the basis of responses to random reward. Units activated at reward 
omission were identified by inspection.

Statistical analysis. No statistical methods were used to pre-determine 
sample sizes, but our sample sizes are similar to those reported in previous 
publications15,20,26. No randomization of experimental subjects was necessary as all 
mice were trained and recorded under the same conditions. Behavioral events in 
each training session were randomized on a trial-by-trial basis within the temporal 
ranges and incidence rates described in the text. Data collection and analysis were 
not performed blind to the conditions of the experiment, but analysis relied on 
code that was standardized for all experimental conditions.
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Categorical comparisons between proportions were made using the Chi-
squared test. Data distributions were not assumed to be normally distributed and 
all statistical comparisons between groups of continuous variables were performed 
using non-parametric tests—the Wilcoxon rank-sum test and sign test were used 
to study differences between two groups of unpaired and paired data, respectively, 
and the Kruskal–Wallis test was used when more than two groups were compared. 
Bonferroni correction was applied for multiple comparisons. In general, 95% 
confidence intervals (P < 0.05) were used to define statistical significance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The custom analysis code used in this study is available from the corresponding 
authors upon reasonable request.

References
 51. Zhang, X. M. et al. Highly restricted expression of Cre recombinase in 

cerebellar Purkinje cells. Genesis 40, 45–51 (2004).
 52. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal 

activity. Nature 499, 295–300 (2013).
 53. Aronov, D. & Tank, D. W. Engagement of neural circuits underlying 2D 

spatial navigation in a rodent virtual reality system. Neuron 84,  
442–456 (2014).

 54. Burgess, C. P. et al. High-yield methods for accurate two-alternative visual 
psychophysics in head-fixed mice. Cell Rep. 20, 2513–2524 (2017).

 55. Slotnick, B. A simple 2-transistor touch or lick detector circuit. J. Exp. Anal. 
Behav. 91, 253–255 (2009).

 56. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of 
neural activity. Nature 551, 232–236 (2017).

 57. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard 
two-photon microscopy. Preprint at biorXiv https://doi.org/10.1101/061507 
(2017).

 58. Deneux, T. et al. Accurate spike estimation from noisy calcium signals for 
ultrafast three-dimensional imaging of large neuronal populations in vivo. 
Nat. Commun. 7, 12190 (2016).

 59. Ozden, I., Lee, H. M., Sullivan, M. R. & Wang, S. S. Identification and 
clustering of event patterns from in vivo multiphoton optical recordings of 
neuronal ensembles. J. Neurophysiol. 100, 495–503 (2008).

 60. Tsutsumi, S. et al. Structure-function relationships between aldolase C/zebrin 
II expression and complex spike synchrony in the cerebellum. J. Neurosci. 35, 
843–852 (2015).

 61. Ramirez, J. E. & Stell, B. M. Calcium imaging reveals coordinated simple 
spike pauses in populations of cerebellar Purkinje cells. Cell Rep. 17, 
3125–3132 (2016).

 62. Streng, M. L., Popa, L. S. & Ebner, T. J. Climbing fibers control Purkinje cell 
representations of behavior. J. Neurosci. 37, 1997–2009 (2017).

 63. Watson, B. O., Yuste, R. & Packer, A. M. PackIO and EphysViewer: software 
tools for acquisition and analysis of neuroscience data. Preprint at biorXiv 
https://doi.org/10.1101/054080 (2016).

 64. Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. 
Fast and accurate spike sorting of high-channel count probes with Kilosort. 
Adv. Neural Inf. Process. Syst. 29, 4448–4456 (2016).

 65. Armstrong, D. M. & Rawson, J. A. Activity patterns of cerebellar cortical 
neurones and climbing fibre afferents in the awake cat. J. Physiol. 289, 
425–448 (1979).

 66. Gao, H., Solages, Cd & Lena, C. Tetrode recordings in the cerebellar cortex.  
J. Physiol. Paris 106, 128–136 (2012).

 67. Dong, H.-W. The Allen Reference Atlas: A Digital Color Brain Atlas of the 
C57Bl/6J Male Mouse (Wiley, 2008).

 68. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 
207–214 (2014).

 69. Shamash, P., Carandini, M., Harris, K. & Steinmetz, N. A tool for analyzing 
electrode tracks from slice histology. Preprint at biorXiv https://doi.
org/10.1101/447995 (2018).

NatuRe NeuRosCieNCe | www.nature.com/natureneuroscience

https://doi.org/10.1101/061507
https://doi.org/10.1101/054080
https://doi.org/10.1101/447995
https://doi.org/10.1101/447995
http://www.nature.com/natureneuroscience


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Michael Hausser, Dimitar Kostadinov

Last updated by author(s): Feb 27, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Virtual reality environment was created using ViRMEn in Matlab 2016a. Imaging data were acquired using Scanimage 2015 in Matlab 
2016a. Electrphysiology data were acquired using SpikeGLX. Behavioral data and trail triggers were acquired using PackIO (reference 63).

Data analysis Data analysis was performed in Matlab and Python using a combination of custom written scripts and available software. Segmentation 
of calcium imaging data was performed using Suite2p (reference 57), imaging event detection was performed using MLspike (reference 
58), and spike sorting was performed using Kilosort2 (https://github.com/MouseLand/Kilosort2, reference 64) and curated using Phy 
(https://github.com/kwikteam/phy). Recording tracks were aligned to the Allen Mouse Common Coordinate Framework (CCF, references 
67 and 68) using ‘Allen CCF tools’, a custom GUI for 3D alignment of electrode tracks to histology (reference 69). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data and analysis code that support the findings of this study are available from the corresponding authors upon reasonable request.



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous publications 
(see references 15, 20, and 26).

Data exclusions No animals were excluded except in obvious cases where animals did not learn the required behavioural task or data could not be collected 
due to poor viral expression or occluded chronic windows. There were a few instances where cells or trials were excluded from analysis. 
When we analyzed responses of Purkinje cells assigned to particular microzones (i.e. Figures 3F, 6G, and 7G), we excluded neurons that were 
not categorically grouped in to a microzone, as described in the methods subsection 'Identification of Purkinje cell microzones'. When 
measuring lick latency in the naive condition in Figure 5E, we excluded trials before mice began licking to reward delivery. This is noted in the 
figure legend. In our analysis of fast and slow reaction wheel turns in Supplementary Figure 1, we excluded one session from our analysis 
because it only contained 4 trials in the slow reaction time condition.

Replication Behavioral training and imaging experiments were done in batches rather than all at once. Data from multiple batched of mice were used in 
this study. Thus, the general findings of the study were replicated internally several times.

Randomization No randomization of experimental subjects was necessary as all mice were trained and recorded under the same conditions. Behavioral 
events within each training session were randomized on a trial-by-trial basis within the temporal ranges and incidence rates described in the 
text. 

Blinding Data collection and analysis were not performed blind to the conditions of the experiment, but analysis relied on code that was standardized 
for all experimental conditions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We used male Pcp2(L7)-Cre mice (line Jdhu – B6.Cg-Tg(Pcp2-Cre)3555Jdhu/J) aged between 3 and 6 months.

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used.

Ethics oversight All animal procedures were approved by the local Animal Welfare and Ethical Review Board at University College London and 
performed under license from the UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells
	Results
	Population Purkinje cell complex spike recordings during a sensorimotor task. 
	Topographic organization of reward-related signals. 
	Predictability modulates reward-related sensory responses in trained mice. 
	Modulation of reward-related responses develops with training. 
	Fictive reward on operant trials triggers error signals across microzones. 
	Feedback error signals caused by omission of tone-cued reward. 

	Discussion
	Microzonal organization of reward signals in Purkinje cells. 
	Learned, temporally specific suppression of sensory responses to predictable rewards. 
	Relationship between reward-related signals in the two input streams to Purkinje cells. 
	Relationship with reward signals elsewhere in the brain. 

	Online content
	Acknowledgements
	Fig. 1 Population Purkinje cell complex spike imaging during a sensorimotor task.
	Fig. 2 Reward-activated and suppressed Purkinje cells segregate to distinct cerebellar microzones.
	Fig. 3 Predictability modulates reward responses in trained mice.
	Fig. 4 Electrophysiological recordings of complex spikes during cued and random reward presentation.
	Fig. 5 Modulation of reward-related responses develops with training.
	Fig. 6 Fictive rewards on operant trials trigger error signals across microzones.
	Fig. 7 Omission of cued rewards triggers feedback error signals.




